-
Notifications
You must be signed in to change notification settings - Fork 0
/
bamt_general.py
243 lines (193 loc) · 9.18 KB
/
bamt_general.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import pandas as pd
import numpy as np
import random
import re
import itertools
import dill as pickle
from sklearn import preprocessing
import matplotlib.pyplot as plt
import bamt.networks as nets
import bamt.nodes as nodes
import bamt.preprocessors as pp
from pgmpy.estimators import K2Score
def token_check(columns, objects_res, config_bamt):
list_correct_structures_unique = config_bamt.params["correct_structures"]["list_unique"]
variable_names = config_bamt.params["fit"]["variable_names"]
list_correct_structures = set()
for term in list_correct_structures_unique:
# str_r = '_r' if '_r' in term else ''
str_elem = ''
if any(f'_{elem}' in term for elem in variable_names):
for elem in variable_names:
if f'_{elem}' in term:
term = term.replace(f'_{elem}', "")
str_elem = f'_{elem}'
# for case if several terms exist
arr_term = re.sub('_r', '', term).split(' * ')
perm_set = list(itertools.permutations([i for i in range(len(arr_term))]))
for p_i in perm_set:
temp = " * ".join([arr_term[i] for i in p_i]) + str_elem # + str_r
list_correct_structures.add(temp)
def out_red(text):
print("\033[31m {}".format(text), end='')
def out_green(text):
print("\033[32m {}".format(text), end='')
met, k_sys = 0, len(objects_res)
k_min = k_sys if k_sys < 5 else 5
for object_row in objects_res[:k_min]:
k_c, k_l = 0, 0
for col in columns:
if col in object_row:
col_temp = re.sub('_r', '', col)
if col_temp in list_correct_structures:
k_c += 1
out_green(f'{col}')
print(f'\033[0m:{object_row[col]}')
else:
k_l += 1
out_red(f'{col}')
print(f'\033[0m:{object_row[col]}')
print(f'correct structures = {k_c}/{len(list_correct_structures_unique)}')
print(f'incorrect structures = {k_l}')
print('--------------------------')
for object_row in objects_res:
for temp in object_row.keys():
if temp in list_correct_structures:
met += 1
print(f'average value (equation - {k_sys}) = {met / k_sys}')
def get_objects(synth_data, config_bamt):
"""
Parameters
----------
synth_data : pd.dataframe
The fields in the table are structures of received systems/equations,
where each record/row contains coefficients at each structure
config_bamt: class Config from TEDEouS/config.py contains the initial configuration of the task
Returns
-------
objects_result - list objects (combination of equations or systems)
"""
objects = [] # equations or systems
for i in range(len(synth_data)):
object_row = {}
for col in synth_data.columns:
value = synth_data[col].values[i]
if isinstance(value, str):
object_row[synth_data[col].name] = np.float64(value)
else:
object_row[synth_data[col].name] = value
objects.append(object_row)
objects_result = []
for i in range(len(synth_data)):
object_res = {}
for key, value in objects[i].items():
if abs(float(value)) > config_bamt.params["glob_bamt"]["lambda"]:
object_res[key] = value
if len(object_res) >= 2:
objects_result.append(object_res)
# print(f'{i + 1}.{object_res}') # full string output
# print('--------------------------')
return objects_result
def bs_experiment(df, cfg, title):
path = f'data/{title}/bamt_result'
if not (os.path.exists(path)):
os.mkdir(path)
if cfg.params["glob_bamt"]["load_result"]:
with open(f'{path}/data_equations_{cfg.params["glob_bamt"]["sample_k"]}_{cfg.params["glob_bamt"]["nets"]}.pickle', 'rb') as f:
objects_res = pickle.load(f)
if cfg.params["correct_structures"]["list_unique"] is not None:
token_check(df.columns, objects_res, cfg)
return objects_res
# Rounding values
for col in df.columns:
df[col] = df[col].round(decimals=cfg.params["glob_bamt"]["round"])
# Deleting rows with condition
df = df.loc[(df.sum(axis=1) != -len(cfg.params["fit"]["variable_names"])), (df.sum(axis=0) != 0)]
# Deleting null columns
df = df.loc[:, (df != 0).any(axis=0)]
# (df != 0).sum(axis = 0) # Number of non-zero values in columns/structures
df_temp = (df[[col for col in df.columns if
'C' not in col]] != 0).copy() # exclude the free term column for calculations
init_nodes_list = []
for i in range(len(cfg.params["fit"]["variable_names"])):
init_nodes = df_temp.sum(axis=0).idxmax()
init_nodes_list.append(init_nodes)
df_temp = df_temp.drop(init_nodes, axis=1)
print(init_nodes_list)
if cfg.params["glob_bamt"]["nets"] == 'continuous':
df_main = df.copy()
bn = nets.ContinuousBN(use_mixture=True)
preprocessor_list = []
if cfg.params["preprocessor"]["encoder_boolean"]:
encoder = preprocessing.LabelEncoder()
preprocessor_list.append(('encoder', encoder))
if cfg.params["preprocessor"]["discretizer_boolean"]:
discretizer = preprocessing.KBinsDiscretizer(n_bins=cfg.params["glob_bamt"]["n_bins"], encode='ordinal', strategy=cfg.params["preprocessor"]["strategy"])
preprocessor_list.append(('discretizer', discretizer))
p = pp.Preprocessor(preprocessor_list)
discrete_data, est = p.apply(df_main)
info = p.info
else: # when the table includes discrete values (right part -1 or 0)
# An array to keep track of if a row has been changed
modified_rows = [False] * len(df)
for init_node in init_nodes_list:
for i in range(len(df)):
if not modified_rows[i]: # Check if the row has been changed before
value = df[init_node].iloc[i]
if value not in [0, -1]:
factor = - df[init_node].iloc[i]
df.iloc[i, :] = df.iloc[i, :] / factor # Divide the whole string by the opposite value to get -1
modified_rows[i] = True
modified_count = sum(modified_rows)
print(f"Number of rows modified: {modified_count}")
df_main = df.copy()
# for node_i in init_nodes_list:
# df_main.rename(columns={node_i: node_i[:-2] + '_r_' + node_i[-1]}, inplace=True)
for col in df_main.columns:
if col in init_nodes_list:
df_main = df_main.astype({col: "int64"})
df_main = df_main.astype({col: "str"})
all_r = df_main.shape[0]
unique_r = df_main.groupby(df_main.columns.tolist(), as_index=False).size().shape[0]
print(f'Out of the {all_r} equations obtained, \033[1m {unique_r} unique \033[0m ({int(unique_r / all_r * 100)} %)')
l_r, l_left = [], []
for term in list(df_main.columns):
if term in init_nodes_list:
l_r.append(term)
else:
l_left.append(term)
df_main = df_main[l_left + l_r]
bn = nets.HybridBN(has_logit=True, use_mixture=True)
discretizer = preprocessing.KBinsDiscretizer(n_bins=cfg.params["glob_bamt"]["n_bins"], encode='ordinal', strategy='quantile')
p = pp.Preprocessor([('discretizer', discretizer)])
discrete_data, est = p.apply(df_main)
info = p.info
bn.add_nodes(info)
params = {"init_nodes": init_nodes_list} if not cfg.params["params"]["init_nodes"] else cfg.params[
"params"]
print(params)
bn.add_edges(discrete_data, scoring_function=('K2', K2Score), params=params)
bn.plot(f'output_main_{title}.html') # , f'{path}/'
bn.fit_parameters(df_main)
objects_res = []
limit = 10
while len(objects_res) < cfg.params["glob_bamt"]["sample_k"] and limit > 0:
synth_data = bn.sample(cfg.params["glob_bamt"]["sample_k"], as_df=True)
temp_res = get_objects(synth_data, cfg)
if len(temp_res) + len(objects_res) > cfg.params["glob_bamt"]["sample_k"]:
objects_res += temp_res[:cfg.params["glob_bamt"]["sample_k"] - len(objects_res)]
else:
objects_res += temp_res
limit -= 1
if cfg.params["correct_structures"]["list_unique"] is not None:
token_check(df.columns, objects_res, cfg)
if cfg.params["glob_bamt"]["save_result"]:
number_of_files = len(os.listdir(path=f"data/{title}/bamt_result/"))
if os.path.exists(f'data/{title}/bamt_result/data_equations_{len(objects_res)}.csv'):
with open(f'data/{title}/bamt_result/data_equations_{len(objects_res)}_{cfg.params["glob_bamt"]["nets"]}_{number_of_files}.pickle', 'wb') as f:
pickle.dump(objects_res, f, pickle.HIGHEST_PROTOCOL)
else:
with open(f'data/{title}/bamt_result/data_equations_{len(objects_res)}_{cfg.params["glob_bamt"]["nets"]}.pickle', 'wb') as f:
pickle.dump(objects_res, f, pickle.HIGHEST_PROTOCOL)
return objects_res