-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpeak_fitting.py
executable file
·153 lines (120 loc) · 4.97 KB
/
peak_fitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/user/bin/env python
# Basic
import numpy as np
import pandas as pd
# Plotting
import matplotlib.pyplot as plt
from matplotlib import rcParams
rcParams.update({'figure.autolayout': True,
'xtick.top': True,
'xtick.direction': 'in',
'ytick.right': True,
'ytick.direction': 'in',
'font.sans-serif': 'Arial',
'font.size': 14,
'figure.dpi': 96
})
# Peak Fitting, optimization
from lmfit.models import GaussianModel, LorentzianModel, ExponentialModel, ConstantModel, LinearModel, VoigtModel
def fit_peaks(x, y, df_peak_init, fix=[], method='leastsq'):
df_new = df_peak_init.copy()
out_dict = {}
# Run peak fits for each set of peaks
for i in df_new['set'].unique():
df_peaks = df_new.loc[df_new.set==i]
# Build bounded x and y vectors
lb = df_peaks['fit_lb'].iloc[0]
ub = df_peaks['fit_ub'].iloc[0]
lb_ind = int(np.where(x>=lb)[0][0])
ub_ind = int(np.where(x>=ub)[0][0])
xb = x[lb_ind:ub_ind]
yb = y[lb_ind:ub_ind]
# Initialize Baseline model
comp_mod = []
if df_peaks['bg'].iloc[0]=='lin':
bg_mod = LinearModel(prefix='bg_')
pars = bg_mod.make_params(m=0,b=yb.min())
comp_mod.append(bg_mod)
elif df_peaks['bg'].iloc[0]=='exp':
bg_mod = ExponentialModel(prefix='bg_')
pars = bg_mod.guess(y,x=x)
comp_mod.append(bg_mod)
else:
bg_mod = ConstantModel(prefix='bg_')
pars = bg_mod.make_params(c=yb.min())
comp_mod.append(bg_mod)
# Add peaks
for index, peak in df_peaks.iterrows():
prefix = peak['name']+'_'
# Select peak model
if peak['model']=='voigt':
peak_temp = VoigtModel(prefix=prefix)
elif peak['model']=='gauss':
peak_temp = GuassianModel(prefix=prefix)
else:
peak_temp = GuassianModel(prefix=prefix)
# Set peak parameter guesses + vary or fix
pars.update(peak_temp.make_params())
param_guesses = [p.split('_')[0] for p in peak.index if 'guess' in p]
# print(param_guesses)
for p in param_guesses:
pars[prefix+p].set(peak[p+'_guess'])
if p+'_lb' in peak.index:
pars[prefix+p].set(min=peak[p+'_lb'])
if p+'_ub' in peak.index:
pars[prefix+p].set(max=peak[p+'_ub'])
if p in fix:
# print('fixing', p)
pars[prefix+p].set(vary=False)
# No negative peaks
pars[prefix+'amplitude'].set(min=0)
# Add peak to the composite model
comp_mod.append(peak_temp)
# Build composite model
comp_mod = np.sum(comp_mod)
out = comp_mod.fit(yb, pars, x=xb, method=method)
params_dict=out.params.valuesdict()
# Store peak features in original dataframe
for peak, prop in [s.split('_') for s in list(params_dict.keys())]:
df_new.loc[df_new.name==peak,prop] = params_dict[peak+'_'+prop]
out_dict[i] = out
return df_new, out_dict
def plot_peak_fits(x, y, df_peaks, out_dict, log_scale=True, ax=None):
color_list = ['#3cb44b','#0082c8','#f58231','#911eb4','#800000','#000080','#808000']
if ax is None:
f1 = plt.figure(figsize=(5,4))
ax = plt.gca()
if log_scale:
ax.semilogy(x, y, 'r-')
else:
ax.plot(x, y, 'r-')
for i in df_peaks['set'].unique():
out = out_dict[i]
df_set = df_peaks.loc[df_peaks.set==i]
# Build bounded x and y vectors
lb = df_set['fit_lb'].iloc[0]
ub = df_set['fit_ub'].iloc[0]
lb_ind = int(np.where(x>=lb)[0][0])
ub_ind = int(np.where(x>=ub)[0][0])
xb = x[lb_ind:ub_ind]
yb = y[lb_ind:ub_ind]
# Add peaks to plot
comps = out.eval_components(x=xb)
if log_scale:
ax.semilogy(xb, out.eval(x=xb), '-', color = color_list[i])
for c in comps:
try:
ax.semilogy(xb, comps[c], '--', color = color_list[i])
except:
const_eval = np.ones(xb.shape)*comps[c]
ax.semilogy(xb, const_eval, '--', color = color_list[i])
else:
ax.plot(xb, out.eval(x=xb), '-', color = color_list[i])
for c in comps:
try:
ax.plot(xb, comps[c], '--', color = color_list[i])
except:
const_eval = np.ones(xb.shape)*comps[c]
ax.plot(xb, const_eval, '--', color = color_list[i])
ax.set_ylim( bottom=max(1,np.min(y)/10), top=np.max(y)*1.3 )
return ax