-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDQN.py
54 lines (43 loc) · 1.4 KB
/
DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from maze_env3 import Maze
from DQN_brain import DeepQNetwork
def run_maze():
step = 0
for episode in range(300):
# initial observation
observation = env.reset()
while True:
# fresh env
env.render()
# RL choose action based on observation
action = RL.choose_action(observation)
# RL take action and get next observation and reward
observation_, reward, done = env.step(action)
RL.store_transition(observation, action, reward, observation_)
if (step > 200) and (step % 5 == 0):
RL.learn()
# RL.save_model()
# swap observation
observation = observation_
# break while loop when end of this episode
if done:
break
step += 1
# end of game
print('game over')
RL.save_model()
print('parameters has been saved')
env.destroy()
if __name__ == "__main__":
# maze game
env = Maze()
RL = DeepQNetwork(env.n_actions, env.n_features,
learning_rate=0.01,
reward_decay=0.9,
e_greedy=0.9,
replace_target_iter=200,
memory_size=2000,
# output_graph=True
)
env.after(100, run_maze)
env.mainloop()
RL.plot_cost()