-
Notifications
You must be signed in to change notification settings - Fork 8
/
KS_helper_autograd.py
278 lines (201 loc) · 7.92 KB
/
KS_helper_autograd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# from numpy import *
# import numpy as np
from numba import jit
#from sympy import mpmath
global use_autograd
# use_autograd=False
use_autograd=True
if use_autograd==True:
from autograd.numpy import *
import autograd.numpy as np
from autograd import elementwise_grad, jacobian
def jit(f):
# print "###"
return f
else:
from numpy import *
import numpy as np
##### according to https://en.wikipedia.org/wiki/SRGB
###for single value:
@jit
def Gamma_trans(C_linear):
if C_linear<=0.0031308:
return 12.92*C_linear
else:
a=0.055
return (1+a)*(C_linear**(1.0/2.4))-a
@jit
def Gamma_trans_img1(RGB_linear_img):
# print "#1"
thres=0.0031308
out=np.ones(RGB_linear_img.shape)
out[RGB_linear_img<=thres]=12.92* RGB_linear_img[RGB_linear_img<=thres]
a=0.055
out[RGB_linear_img>thres]=(1+a)*(RGB_linear_img[RGB_linear_img>thres]**(1.0/2.4))-a
return out
@jit
def Gamma_trans_img2(RGB_linear_img):
# print "#2"
return RGB_linear_img #### for comparing autograd and without autograd.
## new version, very slow!
# @jit
# def Gamma_trans_img(RGB_linear_img):
# RGB_linear_img_flatten=RGB_linear_img.flatten()
# out=np.array([Gamma_trans(item) for item in RGB_linear_img_flatten]).reshape(RGB_linear_img.shape)
# return out
# #### new version, a little error here.
@jit
def Gamma_trans_img3(RGB_linear_img):
# print "#3"
eps=1e-50
RGB_linear_img=RGB_linear_img.clip(eps,1.0)
thres=0.0031308
a=0.055
### what if some value of RGB_lienar_img is equal to thres? then some error will happen, but probability is very small
out1=np.minimum(RGB_linear_img, thres)-thres
out2=np.maximum(RGB_linear_img, thres)-thres
temp1=12.92*RGB_linear_img
temp2=(1+a)*(RGB_linear_img**(1.0/2.4))-a
out=np.divide((temp1*out1),(out1+eps))+np.divide((temp2*out2),(out2+eps))
return out
@jit
def mycoth(x, eps=1e-16):
# print x.shape
# print type(x)
x=np.maximum(x, eps) ## if x is too small, for example 1e-17, then will cause divide by zero error.
ex = np.exp(2*x)
return (ex+1.0)/(ex-1.0)
### use coth instead of 1/tanh(x)
@jit
def equations_in_RealPigments(K,S,r,h, eps=1e-8, model='normal'): ## r is substrate reflectance, h is layer thicness, all of parameters can either be array or scalar values
K=np.maximum(K,eps)
S=np.maximum(S,eps)
a=1+K/S
# b=sqrt(a**2-1.0)
b=(a**2-1.0)**(1/2.0)
if model=='normal':
d=mycoth(b*S*h)
numerator=1-r*(a-b*d)
denumerator=a-r+b*d
R=numerator/denumerator
elif model=='infinite':
R=a-b
else:
print 'wrong option!'
return R
# def equations_in_RealPigments(K,S,r,h,eps=1e-8, model='normal'): ## r is substrate reflectance, h is layer thicness, all of parameters can either be array or scalar values
# K=np.maximum(K,eps)
# S=np.maximum(S,eps)
# a=1+K/S
# b=(a**2-1.0)**(1/2.0)
# c=np.tanh(b*S*h)
# numerator=1-r*(a-b/c)
# denumerator=a-r+b/c
# R=numerator/denumerator
# return R
### vectorized pixels, for any number of pigments
@jit
def KM_mixing_multiplepigments(K_vector, S_vector, weights, r=1.0, h=1.0, model='normal'): ### here the weights should be normalized.
###### Normalize weights!!!
W_sum=weights.sum(axis=1).reshape((-1,1))
W_sum=np.maximum(W_sum, 1e-15) #### to fit for autograd.
weights_normalized=np.divide(weights,W_sum)
# weights_normalized=weights/weights.sum(axis=1).reshape((-1,1))
nominator=np.dot(weights_normalized,K_vector)
denominator=np.dot(weights_normalized,S_vector)
### default is on white background,r=1.0 and thickness=0.5
r_array=np.ones(nominator.shape)*r
R_vector=equations_in_RealPigments(nominator,denominator, r_array, h, model=model)
return R_vector #### shape is N*L
# #@jit
# def equations_in_RealPigments_use_KS_S(KS,S,r,h,eps=1e-8): ## r is substrate reflectance, h is layer thicness, all of parameters can either be array or scalar values
# KS[KS<eps]=eps
# S[S<eps]=eps
# a=1+KS
# b=sqrt(a**2-1.0)
# c=np.tanh(b*S*h)
# numerator=1-r*(a-b/c)
# denumerator=a-r+b/c
# R=numerator/denumerator
# return R
# ### vectorized pixels, for any number of pigments
# #@jit
# def KM_mixing_multiplepigments_use_KS_S(KS_vector, S_vector, weights, r=1.0, h=1.0): ### here the weights should be normalized.
# #### KS_vector is K_vector/S_vector
# N=len(weights) ### weights shape is N*M
# M=len(KS_vector) #### KS_vector shape is M*L
# L=KS_vector.shape[1]
# nominator=np.zeros((N,L))
# denominator=nominator.copy()
# ###### Normalize weights!!!
# weights_normalized=weights.copy()
# weights_normalized=weights_normalized/weights_normalized.sum(axis=1).reshape((-1,1))
# for i in range(0,M):
# nominator+=weights_normalized[:,i:i+1]*KS_vector[i:i+1,:]*S_vector[i:i+1,:]
# denominator+=weights_normalized[:,i:i+1]*S_vector[i:i+1,:]
# ### default is on white background,r=1.0 and thickness=0.5
# r_array=np.ones(nominator.shape)*r
# R_vector=equations_in_RealPigments(nominator,denominator, r_array, h)
# return R_vector #### shape is N*L
# ### for vectorized pixels.
# #@jit
# def KM_layering_multiplepigments(K,S,thickness,r=1.0): ## K[0], S[0] is for first pigment, K[1], S[1] is for second pigment.... thickness[0] is second pigment's thickness, thickness[1] is third pigments thickness.
# N=thickness.shape[0]
# M=K.shape[0]
# L=K.shape[1]
# K=K.reshape((M,1,L))*np.ones((1,N,1))
# S=S.reshape((M,1,L))*np.ones((1,N,1))
# r_array=np.ones((N,L))*r
# for i in range(0,M):
# r_array=equations_in_RealPigments(K[i],S[i],r_array,thickness[:,i:i+1])
# return r_array ### shape is N*L
# ### assume input is multiple wavelength
# ##@jit
# #def PigmentOnWhite(K,S,thickness,Illuminantnew, Normalize, R_rgbcoeff):
# # r=np.ones(K.shape)## white reflectance is 1.
# # R=equations_in_RealPigments(K,S,r,thickness)
# # ## project to 3 channels
# # P=R*Illuminantnew[:,1]
# # R_rgb=(P.reshape((1,-1))*R_rgbcoeff).sum(axis=1)
# # R_rgb/=Normalize
# # return R_rgb
# ##@jit
# #def PigmentOnWhite_show(K,S,Illuminantnew,Normalize,R_rgbcoeff, thickness=1.0, start=-8, end=1.9, SCALE=1):
# # R_layering=PigmentOnWhite(K,S,thickness,Illuminantnew,Normalize, R_rgbcoeff)
# # R_layering=(R_layering*SCALE).clip(0,1) ## scale and clip
# # img_layering=np.ones((500,500,3))*R_layering.reshape((1,1,3))
# # results=Gamma_trans_img(img_layering) ### gamma correction from linear RGB to be sRGB
# # return (results*255).clip(0,255).astype(np.uint8)
# ##@jit
# # def PigmentOnWhite_show(K,S,Illuminantnew,Normalize,R_rgbcoeff, start=-8, end=1.9, SCALE=1):
# # R_layering=[]
# # Num=5000
# # for thickness in np.logspace(start, end, num=Num, base=10):
# # R_layering.append(PigmentOnWhite(K,S,thickness,Illuminantnew,Normalize,R_rgbcoeff))
# # print R_layering[0], R_layering[-1]
# # R_layering=(R_layering*SCALE).clip(0,1) ## scale exposure and clip
# # img_layering=np.ones((50,1,3))*np.array(R_layering).reshape((1,Num,3))
# # results=Gamma_trans_img(img_layering) ### gamma correction from linear RGB to be sRGB
# # return (results*255).clip(0,255).astype(np.uint8)
# #
if __name__ == '__main__':
# def f(x):
# K = x[:800].reshape(100,8)
# S = x[800:].reshape(100,8)
# R = equations_in_RealPigments( K, S, 1.0, 1.0 )
# return R.sum()
# from autograd import grad
# gradf = grad(f)
# g = gradf( np.linspace( 1,2, 1600 ) )
# print(g)
from autograd import grad, jacobian
# initial=np.zeros(5)
initial= np.random.random_sample(5)
print initial
Jac1 = jacobian(Gamma_trans_img)
j1 = Jac1(initial)
print j1
Jac2 = jacobian(Gamma_trans_img2)
j2 = Jac2(initial)
print j2
print abs(j1-j2).sum()