-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfast_energy_RGB_lap_adjusted_weights.py
686 lines (527 loc) · 27.4 KB
/
fast_energy_RGB_lap_adjusted_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
from numpy import *
from itertools import izip as zip
import PIL.Image as Image
import os,sys
import errno
def make_sure_path_exists(path):
try:
os.makedirs(path)
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
## Normally it is bad practice to put a mutable value as the default parameter,
## because it is shared across all function calls, so its changed state will persist.
## In this case, though, I want that behavior.
def E_opaque( Y, scratches = {} ):
return -dot( Y, Y )
def grad_E_opaque( Y, out, scratches = {} ):
multiply( -2, Y, out )
def E_spatial_static( Y, Ytarget, scratches = {} ):
if 'Y' not in scratches: scratches['Y'] = Y.copy()
scratch = scratches['Y']
subtract( Y, Ytarget, scratch )
return dot( scratch, scratch )
def grad_E_spatial_static( Y, Ytarget, out, scratches = {} ):
subtract( Y, Ytarget, out )
out *= 2
def E_spatial_dynamic( Y, LTL, scratches = {} ):
## I don't see how to specify the output memory
return dot( Y, LTL.dot( Y ) )
def grad_E_spatial_dynamic( Y, LTL, out, scratches = {} ):
## I don't see how to specify the output memory
out[:] = LTL.dot( Y )
out *= 2
def E_polynomial_pieces( Y, C, P, scratches = {} ):
'''
Y is a #pix-by-#layers flattened array
C is a (#layers+1)-by-#channels not-flattened array (the 0-th layer is the background color)
P is a #pix-by-#channels not-flattened array
'''
### Reshape Y the way we want it.
Y = Y.reshape( ( P.shape[0], C.shape[0]-1 ) )
## Allocate scratch space
if 'F' not in scratches:
scratches['F'] = empty( P.shape, dtype = Y.dtype )
F = scratches['F']
if 'M' not in scratches:
## We want the non-flattened Y's shape.
assert len( Y.shape ) > 1
scratches['M'] = empty( Y.shape, dtype = Y.dtype )
M = scratches['M']
if 'D' not in scratches:
scratches['D'] = empty( ( C.shape[0]-1, C.shape[1] ), dtype = Y.dtype )
D = scratches['D']
if 'DM' not in scratches:
scratches['DM'] = empty( ( P.shape[0], D.shape[0], D.shape[1] ), dtype = Y.dtype )
DM = scratches['DM']
if 'energy_presquared' not in scratches:
scratches['energy_presquared'] = empty( F.shape, dtype = Y.dtype )
energy_presquared = scratches['energy_presquared']
## Compute F
subtract( C[newaxis,-1,:], P, F )
## Compute M
cumprod( Y[:,::-1], axis = 1, out = M )
M = M[:,::-1]
## Compute D
subtract( C[:-1,:], C[1:,:], D )
## Finish the computation
multiply( D[newaxis,...], M[...,newaxis], DM )
DM.sum( 1, out = energy_presquared )
energy_presquared += F
def E_polynomial( Y, C, P, scratches = {} ):
E_polynomial_pieces( Y, C, P, scratches )
energy_presquared = scratches['energy_presquared']
square( energy_presquared, energy_presquared )
return energy_presquared.sum()
def gradY_E_polynomial( Y, C, P, out, scratches = {} ):
E_polynomial_pieces( Y, C, P, scratches )
### Reshape Y the way we want it.
Y = Y.reshape( ( P.shape[0], C.shape[0]-1 ) )
energy_presquared = scratches['energy_presquared']
D = scratches['D']
M = scratches['M']
DM = scratches['DM']
if 'Mi' not in scratches:
scratches['Mi'] = empty( DM.shape, dtype = Y.dtype )
Mi = scratches['Mi']
assert Mi.shape[1] == Y.shape[1]
if 'Yli' not in scratches:
scratches['Yli'] = empty( Y.shape[0], dtype = Y.dtype )
Yli = scratches['Yli']
for li in range( Y.shape[1] ):
Yli[:] = Y[:,li]
Y[:,li] = 1.
## UPDATE: I cannot use cumprod() when aliasing
## the input and output parameters and one is the reverse of the other.
cumprod( Y[:,::-1], axis = 1, out = M )
Y[:,li] = Yli
Mr = M[:,::-1]
Mr[:,li+1:] = 0.
multiply( D[newaxis,...], Mr[...,newaxis], DM )
DM.sum( 1, out = Mi[:,li,:] )
multiply( energy_presquared[:,newaxis,:], Mi, Mi )
out.shape = Y.shape
Mi.sum( 2, out = out )
out *= 2.
out.shape = ( prod( Y.shape ), )
def gen_energy_and_gradient( img, layer_colors, weights, img_spatial_static_target = None, scratches = None ):
'''
Given a rows-by-cols-by-#channels 'img', where channels are the 3 color channels,
and (#layers+1)-by-#channels 'layer_colors' (the 0-th color is the background color),
and a dictionary of floating-point or None weights { w_spatial, w_opacity },
and an optional parameter 'img_spatial_static_target' which are the target values for 'w_spatial_static' (if not flattened, it will be),
and an optional parameter 'scratches' which should be a dictionary that will be used to store scratch space between calls to this function (use only *if* arguments are the same size),
returns a tuple of functions:
( e, g )
where e( Y ) computes the scalar energy of a flattened rows-by-cols-by-#layers array of (1-alpha) values,
and g( Y ) computes the gradient of e.
'''
img = asfarray( img )
layer_colors = asfarray( layer_colors )
assert len( img.shape ) == 3
assert len( layer_colors.shape ) == 2
assert img.shape[2] == layer_colors.shape[1]
from pprint import pprint
# pprint( weights )
assert set( weights.keys() ).issubset( set([ 'w_polynomial', 'w_opaque', 'w_spatial_static', 'w_spatial_dynamic' ]) )
C = layer_colors
P = img.reshape( -1, img.shape[2] )
num_layers = C.shape[0]-1
Ylen = P.shape[0] * num_layers
if 'w_spatial_static' in weights:
assert img_spatial_static_target is not None
Yspatial_static_target = img_spatial_static_target.ravel()
if 'w_spatial_dynamic' in weights:
# print 'Preparing a Laplacian matrix for E_spatial_dynamic...'
import fast_energy_laplacian
import scipy.sparse
# print ' Generating L...'
LTL = fast_energy_laplacian.gen_grid_laplacian( img.shape[0], img.shape[1] )
# print ' Computing L.T*L...'
# LTL = LTL.T * LTL
# print ' Replicating L.T*L for all layers...'
## Now repeat LTL #layers times.
## Because the layer values are the innermost dimension,
## every entry (i,j, val) in LTL should be repeated
## (i*#layers + k, j*#layers + k, val) for k in range(#layers).
LTL = LTL.tocoo()
## Store the shape. It's a good habit, because there may not be a nonzero
## element in the last row and column.
shape = LTL.shape
## There is a "fastest" version below.
'''
rows = zeros( LTL.nnz * num_layers, dtype = int )
cols = zeros( LTL.nnz * num_layers, dtype = int )
vals = zeros( LTL.nnz * num_layers )
count = 0
ks = arange( num_layers )
for r, c, val in zip( LTL.row, LTL.col, LTL.data ):
## Slow
#for k in range( num_layers ):
# rows.append( r*num_layers + k )
# cols.append( c*num_layers + k )
# vals.append( val )
## Faster
rows[ count : count + num_layers ] = r*num_layers + ks
cols[ count : count + num_layers ] = c*num_layers + ks
vals[ count : count + num_layers ] = val
count += num_layers
assert count == LTL.nnz * num_layers
'''
## Fastest
ks = arange( num_layers )
rows = ( repeat( asarray( LTL.row ).reshape( LTL.nnz, 1 ) * num_layers, num_layers, 1 ) + ks ).ravel()
cols = ( repeat( asarray( LTL.col ).reshape( LTL.nnz, 1 ) * num_layers, num_layers, 1 ) + ks ).ravel()
vals = ( repeat( asarray( LTL.data ).reshape( LTL.nnz, 1 ), num_layers, 1 ) ).ravel()
LTL = scipy.sparse.coo_matrix( ( vals, ( rows, cols ) ), shape = ( shape[0]*num_layers, shape[1]*num_layers ) ).tocsr()
# print '...Finished.'
if scratches is None:
scratches = {}
def e( Y ):
e = 0.
if 'w_polynomial' in weights:
e += weights['w_polynomial'] * E_polynomial( Y, C, P, scratches )
if 'w_opaque' in weights:
e += weights['w_opaque'] * E_opaque( Y, scratches )
if 'w_spatial_static' in weights:
e += weights['w_spatial_static'] * E_spatial_static( Y, Yspatial_static_target, scratches )
if 'w_spatial_dynamic' in weights:
e += weights['w_spatial_dynamic'] * E_spatial_dynamic( Y, LTL, scratches )
# print 'Y:', Y
# print 'e:', e
return e
## Preallocate this memory
gradient_space = [ zeros( Ylen ), zeros( Ylen ) ]
# total_gradient = zeros( Ylen )
# gradient_term = zeros( Ylen )
def g( Y ):
total_gradient = gradient_space[0]
gradient_term = gradient_space[1]
total_gradient[:] = 0.
if 'w_polynomial' in weights:
gradY_E_polynomial( Y, C, P, gradient_term, scratches )
gradient_term *= weights['w_polynomial']
total_gradient += gradient_term
if 'w_opaque' in weights:
grad_E_opaque( Y, gradient_term, scratches )
gradient_term *= weights['w_opaque']
total_gradient += gradient_term
if 'w_spatial_static' in weights:
grad_E_spatial_static( Y, Yspatial_static_target, gradient_term, scratches )
gradient_term *= weights['w_spatial_static']
total_gradient += gradient_term
if 'w_spatial_dynamic' in weights:
grad_E_spatial_dynamic( Y, LTL, gradient_term, scratches )
gradient_term *= weights['w_spatial_dynamic']
total_gradient += gradient_term
# print 'Y:', Y
# print 'total_gradient:', total_gradient
return total_gradient
return e, g
def composite_layers( layers ):
layers = asfarray( layers )
## Start with opaque white.
out = 255*ones( layers[0].shape )[:,:,:3]
for layer in layers:
out += layer[:,:,3:]/255.*( layer[:,:,:3] - out )
return out
def optimize( arr, colors, Y0, weights, img_spatial_static_target = None, scratches = None, saver = None ):
'''
Given a rows-by-cols-by-#channels array 'arr', where channels are the 3 color channels,
and (#layers+1)-by-#channels 'colors' (the 0-th color is the background color),
and rows-by-cols-by-#layers array 'Y0' of initial (1-alpha) values for each pixel (flattened or not),
and a dictionary of floating-point or None weights { w_polynomial, w_opacity, w_spatial_dynamic, w_spatial_static },
and an optional parameter 'img_spatial_static_target' which are the target values for 'w_spatial_static' (if not flattened, it will be),
and an optional parameter 'scratches' which should be a dictionary that will be used to store scratch space between calls to this function (use only *if* arguments are the same size),
and an optional parameter 'saver' which will be called after every iteration with the current state of Y.
returns a rows-by-cols-#layers array of optimized Y values, which are (1-alpha).
'''
import scipy.optimize
import time
start = time.clock()
Y0 = Y0.ravel()
Ylen = len( Y0 )
e, g = gen_energy_and_gradient( arr, colors, weights, img_spatial_static_target = img_spatial_static_target, scratches = scratches )
bounds = zeros( ( Ylen, 2 ) )
bounds[:,1] = 1.
## Save the result-in-progress in case the users presses control-C.
## [number of iterations, last Y]
Ysofar = [0,None]
def callback( xk ):
Ysofar[0] += 1
## Make a copy
xk = array( xk )
Ysofar[1] = xk
if saver is not None: saver( xk )
# print 'Optimizing...'
# start = time.clock()
try:
## WOW! TNC does a really bad job on our problem.
# opt_result = scipy.optimize.minimize( e, Y0, method = 'TNC', jac = g, bounds = bounds )
## I did an experiment with the 'tol' parameter.
## I checked in the callback for a max/total absolute difference less than 1./255.
## Passing tol directly doesn't work, because the solver we are using (L-BFGS-B)
## normalizes it by the maximum function value, whereas we want an
## absolute stopping criteria.
## Max difference led to stopping with visible artifacts.
## Total absolute difference terminated on the very iteration that L-BFGS-B did
## anyways.
opt_result = scipy.optimize.minimize( e, Y0, jac = g, bounds = bounds, callback = callback )
except KeyboardInterrupt:
## If the user
print 'KeyboardInterrupt after %d iterations!' % Ysofar[0]
Y = Ysofar[1]
## Y will be None if we didn't make it through 1 iteration before a KeyboardInterrupt.
if Y is None:
Y = -31337*ones( ( arr.shape[0], arr.shape[1], len( colors )-1 ) )
else:
# print opt_result
Y = opt_result.x
# duration = time.clock() - start
# print '...Finished optimizing in %.3f seconds.' % duration
end = time.clock()
print 'Optimize an image of size ', Y.shape, ' took ', (end-start), ' seconds.'
Y = Y.reshape( arr.shape[0], arr.shape[1], len( colors )-1 )
return Y
def run_one( imgpath, orderpath, colorpath, outprefix, weightspath = None, save_every = None, solve_smaller_factor = None, too_small = None ):
'''
Given a path `imgpath` to an image,
a path `colorpath` to a JSON file containing an array of RGB triplets of layer colors (the 0-th color is the background color),
a prefix `outprefix` to use for saving files,
an optional path `weightspath` to a JSON file containing a dictionary of weight values,
an optional positive number `save_every` which specifies how often to save progress,
an optional positive integer `solve_smaller_factor` which, if specified,
will first solve on a smaller image whose dimensions are `1/solve_smaller_factor` the full size image,
and an optional positive integer `too_small` which, if specified, determines
the limit of the `solve_smaller_factor` recursion as the minimum image size (width or height),
runs optimize() on it and saves the output to e.g. `outprefix + "-layer01.png"`.
'''
import json, os
from PIL import Image
import time
arr = asfarray( Image.open( imgpath ).convert( 'RGB' ) )
arr_backup=arr.copy()
arr = arr/255.0
order=loadtxt(orderpath).astype(uint8)
print order
colors = asfarray(json.load(open(colorpath))['vs'])
colors_backup=colors.copy()
print colors
colors=colors[order,:]/255.0
print colors*255.0
assert solve_smaller_factor is None or int( solve_smaller_factor ) == solve_smaller_factor
if save_every is None:
save_every = 10.
if too_small is None:
too_small = 5
# arr = arr[:1,:1,:]
# colors = colors[:3]
kSaveEverySeconds = save_every
print "Will Save temporary results every "+str(kSaveEverySeconds)+" seconds!"
print """If you do not want to save temporary results, you can increase value to look like "--save-every 10000" in command line"""
## [ number of iterations, time of last save, arr.shape ]
last_save = [ None, None, None ]
def reset_saver( arr_shape ):
last_save[0] = 0
last_save[1] = time.clock()
last_save[2] = arr_shape
def saver( xk ):
arr_shape = last_save[2]
last_save[0] += 1
now = time.clock()
## Save every 10 seconds!
if now - last_save[1] > kSaveEverySeconds:
print 'Iteration', last_save[0]
save_results( xk, colors, arr_shape, outprefix )
## Get the time again instead of using 'now', because that doesn't take into
## account the time to actually save the images, which is a lot for large images.
last_save[1] = time.clock()
Ylen = arr.shape[0]*arr.shape[1]*( len(colors) - 1 )
# Y0 = random.random( Ylen )
# Y0 = zeros( Ylen ) + 0.0001
Y0 = .5*ones( Ylen )
# Y0 = ones( Ylen )
static = None
if weightspath is not None:
weights = json.load( open( weightspath ) )
else:
weights = { 'w_polynomial': 3.0, 'w_opaque': 500., 'w_spatial_dynamic': 5000. }
# weights = { 'w_polynomial': 1., 'w_opaque': 100. }
# weights = { 'w_opaque': 100. }
# weights = { 'w_spatial_static': 100. }
# static = 0.75 * ones( Ylen )
# weights = { 'w_spatial_dynamic': 100. }
# weights = { 'w_spatial_dynamic': 100., 'w_opaque': 100. }
num_layers=len(colors)-1
### adjust the weights:
if 'w_polynomial' in weights:
weights['w_polynomial'] *= 50000.0 #### old one is 255*255
weights['w_polynomial'] /= arr.shape[2]
if 'w_opaque' in weights:
weights['w_opaque'] /= num_layers
if 'w_spatial_static' in weights:
weights['w_spatial_static'] /= num_layers
if 'w_spatial_dynamic' in weights:
weights['w_spatial_dynamic'] /= num_layers
if solve_smaller_factor is not None:
assert solve_smaller_factor > 1
def optimize_smaller( solve_smaller_factor, large_arr, large_Y0, large_img_spatial_static_target ):
## Terminate recursion if the image is too small.
if large_arr.shape[0]//solve_smaller_factor < too_small or large_arr.shape[1]//solve_smaller_factor < too_small:
return large_Y0
## small_arr = downsample( large_arr )
small_arr = large_arr[::solve_smaller_factor,::solve_smaller_factor]
## small_Y0 = downsample( large_Y0 )
small_Y0 = large_Y0.reshape( large_arr.shape[0], large_arr.shape[1], -1 )[::solve_smaller_factor,::solve_smaller_factor].ravel()
## small_img_spatial_static_target = downsample( large_img_spatial_static_target )
small_img_spatial_static_target = None
if large_img_spatial_static_target is not None:
small_img_spatial_static_target = large_img_spatial_static_target.reshape( arr.shape[0], arr.shape[1], -1 )[::solve_smaller_factor,::solve_smaller_factor].ravel()
## get an improved Y by recursively shrinking
small_Y1 = optimize_smaller( solve_smaller_factor, small_arr, small_Y0, small_img_spatial_static_target )
## solve on the downsampled problem
print '==> Optimizing on a smaller image:', small_arr.shape, 'instead of', large_arr.shape
reset_saver( small_arr.shape )
small_Y = optimize( small_arr, colors, small_Y1, weights, img_spatial_static_target = small_img_spatial_static_target, saver = saver )
## save the intermediate solution.
saver( small_Y )
## large_Y1 = upsample( small_Y )
### 1 Make a copy
large_Y1 = array( large_Y0 ).reshape( large_arr.shape[0], large_arr.shape[1], -1 )
### 2 Fill in as much as will fit using numpy.repeat()
small_Y = small_Y.reshape( small_arr.shape[0], small_arr.shape[1], -1 )
small_Y_upsampled = repeat( repeat( small_Y, solve_smaller_factor, 0 ), solve_smaller_factor, 1 )
large_Y1[:,:] = small_Y_upsampled[ :large_Y1.shape[0], :large_Y1.shape[1] ]
# large_Y1[ :small_Y.shape[0]*solve_smaller_factor, :small_Y.shape[1]*solve_smaller_factor ] = repeat( repeat( small_Y, solve_smaller_factor, 0 ), solve_smaller_factor, 1 )
### 3 The right and bottom edges may have been missed due to rounding
# large_Y1[ small_Y.shape[0]*solve_smaller_factor:, : ] = large_Y1[ small_Y.shape[0]*solve_smaller_factor - 1 : small_Y.shape[0]*solve_smaller_factor, : ]
# large_Y1[ :, small_Y.shape[1]*solve_smaller_factor: ] = large_Y1[ :, small_Y.shape[1]*solve_smaller_factor - 1 : small_Y.shape[1]*solve_smaller_factor ]
return large_Y1.ravel()
Y0 = optimize_smaller( solve_smaller_factor, arr, Y0, static )
reset_saver( arr.shape )
Y = optimize( arr, colors, Y0, weights, img_spatial_static_target = static, saver = saver )
composite_img=save_results( Y, colors, arr.shape, outprefix )
img_diff=composite_img-arr_backup
RMSE=sqrt(square(img_diff).sum()/(composite_img.shape[0]*composite_img.shape[1]))
print 'img_shape is: ', img_diff.shape
print 'max diff: ', sqrt(square(img_diff).sum(axis=2)).max()
print 'median diff', median(sqrt(square(img_diff).sum(axis=2)))
print 'RMSE: ', RMSE
##### save alphas as barycentric coordinates
alphas=1. - Y.reshape((arr.shape[0]*arr.shape[1], -1 ))
extend_alphas=ones((alphas.shape[0],alphas.shape[1]+1))
extend_alphas[:,1:]=alphas
# savetxt(outprefix +'-'+str(len(colors))+'-PD_layers-'+os.path.splitext(OrderPath)[0]+"-opacities.txt",extend_alphas)
#### first columns of extend_alphas are all 1.0
barycentric_weights=covnert_from_alphas_to_barycentricweights(extend_alphas)
origin_order_barycentric_weights=ones(barycentric_weights.shape)
#### to make the weights order is same as orignal input vertex order
origin_order_barycentric_weights[:,order]=barycentric_weights
# test_weights_diff1=origin_order_barycentric_weights-barycentric_weights
# test_weights_diff2=barycentric_weights-barycentric_weights
# print len(test_weights_diff1[test_weights_diff1==0])
# print len(test_weights_diff2[test_weights_diff2==0])
####assert
temp=sum(origin_order_barycentric_weights.reshape((origin_order_barycentric_weights.shape[0],origin_order_barycentric_weights.shape[1],1))*colors_backup, axis=1)
diff=temp-arr_backup.reshape((-1,3))
# assert(abs(diff).max()<0.5)
print abs(diff).max()
print diff.shape[0]
print sqrt(square(diff).sum()/diff.shape[0])
origin_order_barycentric_weights=origin_order_barycentric_weights.reshape((arr.shape[0],arr.shape[1],-1))
# import json
# output_all_weights_filename=outprefix+'-'+str(len(colors))+"-PD_mixing-weights.js"
# with open(output_all_weights_filename,'wb') as myfile:
# json.dump({'weights': origin_order_barycentric_weights.tolist()}, myfile)
for i in range(origin_order_barycentric_weights.shape[-1]):
output_all_weights_map_filename=outprefix+'-'+str(len(colors))+"-PD_mixing-weights_map-%02d.png" % i
Image.fromarray((origin_order_barycentric_weights[:,:,i]*255).round().clip(0,255).astype(uint8)).save(output_all_weights_map_filename)
return Y
# def save_alpha_info(Y,img_shape,outprefix):
# alphas = 1. - Y.reshape( img_shape[0], img_shape[1], -1 )
# L1_sumalpha=alphas.sum()/(alphas.shape[0]*alphas.shape[1]*alphas.shape[2])
# output_txtfile=outprefix[:-10]+'alpha_info.txt'
# myfile=open(output_txtfile,'a')
# myfile.write(str(outprefix[-4:])+' '+str(L1_sumalpha)+'\n')
# myfile.close()
def covnert_from_alphas_to_barycentricweights(alphas,epsilon=0.0):
import numpy as np
#### first column of alphas should be all 1.0 (canvas is set to be opaque)
def get_weight_from_alpha(alpha,epsilon=0.0):
weight=np.ones(len(alpha))
for i in range(len(weight)-1):
temp1=1.0
temp2=1.0
for j in range(i,len(weight)):
temp1*=(1.0-alpha[j])
for j in range(i+1,len(weight)):
temp2*=(1.0-alpha[j])
weight[i]=temp2-temp1
weight[-1]=alpha[-1]
return weight
weights=np.zeros(alphas.shape)
for ind in range(len(weights)):
alpha=alphas[ind]
weights[ind]=get_weight_from_alpha(alpha)
return weights
def save_results( Y, colors, img_shape, outprefix ):
alphas = 1. - Y.reshape( img_shape[0], img_shape[1], -1 )
layers = []
for li, color in enumerate( colors ): ### colors are now in range[0.0,1.0] not [0,255]
layer = ones( ( img_shape[0], img_shape[1], 4 ), dtype = uint8 )
layer[:,:,:3] = asfarray(color*255.0).round().clip( 0,255 ).astype( uint8 )
layer[:,:,3] = 255 if ( li == 0 ) else (alphas[:,:,li-1]*255.).round().clip( 0,255 ).astype( uint8 )
layers.append( layer )
outpath = outprefix +'-'+str(len(colors))+'-PD_layers-'+os.path.splitext(OrderPath)[0]+'-opacities_map-%02d.png' % li
Image.fromarray( layer[:,:,3] ).save( outpath )
composited = composite_layers( layers )
composited = composited.round().clip( 0, 255 ).astype( uint8 )
outpath = outprefix+'-'+str(len(colors))+'-PD_layers-'+os.path.splitext(OrderPath)[0]+ '-reconstructed.png'
Image.fromarray( composited ).save( outpath )
return composited
if __name__ == '__main__':
def usage():
print >> sys.stderr, "Usage:", sys.argv[0], "path/to/image path/to/layer_color_order path/to/layer_color_list.js path/to/output [--weights /path/to/weights.js] [--save-every save_every_N_seconds N] [--solve-smaller-factor F] [--too-small T]"
print >> sys.stderr, "NOTE: The 0-th element of layer_color_list is the background color."
print >> sys.stderr, 'NOTE: Files will be saved to "path/to/output-reconstructed.png" and "path/to/output-layer01.png"'
sys.exit(-1)
args = list( sys.argv[1:] )
try:
weightspath = None
try:
index = args[:-1].index( '--weights' )
weightspath = args[ index+1 ]
del args[ index : index+2 ]
except ValueError: pass
save_every = None
try:
index = args[:-1].index( '--save-every' )
save_every = int( args[ index+1 ] )
del args[ index : index+2 ]
except ValueError: pass
solve_smaller_factor = None
try:
index = args[:-1].index( '--solve-smaller-factor' )
solve_smaller_factor = int( args[ index+1 ] )
del args[ index : index+2 ]
except ValueError: pass
too_small = None
try:
index = args[:-1].index( '--too-small' )
too_small = int( args[ index+1 ] )
del args[ index : index+2 ]
except ValueError: pass
except Exception:
usage()
if len( args ) != 4: usage()
global OrderPath
foldername, image_path, OrderPath, color_path = args
current_folder="."+foldername+"/"
output_prefix=current_folder+"Application_Files/"
make_sure_path_exists(output_prefix)
output_prefix+=os.path.splitext(image_path)[0]
import time
start=time.clock()
run_one( current_folder+image_path, current_folder+OrderPath, current_folder+color_path, output_prefix, weightspath = current_folder+weightspath, save_every = save_every, solve_smaller_factor = solve_smaller_factor, too_small = too_small )
end=time.clock()
print 'time: ', end-start