-
Notifications
You must be signed in to change notification settings - Fork 12
/
eval.py
430 lines (345 loc) · 16.3 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Evaluate CVP-MVSNet
# by: Jiayu Yang
# date: 2019-08-29
import os,sys,time,logging,argparse,datetime,re
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torch.utils.data import DataLoader
from dataset import dtu_jiayu
from models import net
from models.modules import *
from utils import *
from PIL import Image
from argsParser import getArgsParser
from plyfile import PlyData, PlyElement
# Debug import
import pdb
import matplotlib.pyplot as plt
cudnn.benchmark = True
# Arg parser
parser = getArgsParser()
args = parser.parse_args()
assert args.mode == "test"
# logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
curTime = time.strftime('%Y%m%d-%H%M', time.localtime(time.time()))
log_path = args.loggingdir+args.info.replace(" ","_")+"/"
if not os.path.isdir(args.loggingdir):
os.mkdir(args.loggingdir)
if not os.path.isdir(log_path):
os.mkdir(log_path)
log_name = log_path + curTime + '.log'
logfile = log_name
formatter = logging.Formatter("%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s")
fileHandler = logging.FileHandler(logfile, mode='a')
fileHandler.setFormatter(formatter)
logger.addHandler(fileHandler)
consoleHandler = logging.StreamHandler(sys.stdout)
consoleHandler.setFormatter(formatter)
logger.addHandler(consoleHandler)
logger.info("Logger initialized.")
logger.info("Writing logs to file:"+logfile)
settings_str = "All settings:\n"
line_width = 30
for k,v in vars(args).items():
settings_str += '{0}: {1}\n'.format(k,v)
logger.info(settings_str)
# Run CVP-MVSNet to save depth maps and confidence maps
def save_depth():
# dataset, dataloader
test_dataset = dtu_jiayu.MVSDataset(args, logger)
test_loader = DataLoader(test_dataset, args.batch_size, shuffle=args.eval_shuffle, num_workers=8, drop_last=True)
# model
model = net.network(args)
# model = nn.DataParallel(model)
model.cuda()
# load checkpoint file specified by args.loadckpt
logger.info("loading model {}".format(args.loadckpt))
state_dict = torch.load(args.loadckpt)
model.load_state_dict(state_dict['model'],strict=False)
with torch.no_grad():
for batch_idx, sample in enumerate(test_loader):
start_time = time.time()
sample_cuda = tocuda(sample)
torch.cuda.empty_cache()
outputs = model(\
sample_cuda["ref_img"].float(), \
sample_cuda["src_imgs"].float(), \
sample_cuda["ref_intrinsics"], \
sample_cuda["src_intrinsics"], \
sample_cuda["ref_extrinsics"], \
sample_cuda["src_extrinsics"], \
sample_cuda["depth_min"], \
sample_cuda["depth_max"])
# Parse output
depth_est_list = outputs["depth_est_list"]
depth_est = depth_est_list[0].data.cpu().numpy()
prob_confidence = outputs["prob_confidence"].data.cpu().numpy()
del sample_cuda
filenames = sample["filename"]
logger.info('Iter {}/{}, time = {:.3f}'.format(batch_idx, len(test_loader),time.time() - start_time))
# save depth maps and confidence maps
for filename, est_depth, photometric_confidence in zip(filenames, depth_est, prob_confidence):
depth_filename = os.path.join(args.outdir, filename.format('depth_est', '.pfm'))
confidence_filename = os.path.join(args.outdir, filename.format('confidence', '.pfm'))
os.makedirs(depth_filename.rsplit('/', 1)[0], exist_ok=True)
os.makedirs(confidence_filename.rsplit('/', 1)[0], exist_ok=True)
# save depth maps
save_pfm(depth_filename, est_depth)
write_depth_img(depth_filename+".png", est_depth)
# Save prob maps
save_pfm(confidence_filename, photometric_confidence)
def read_pfm(filename):
file = open(filename, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().decode('utf-8').rstrip()
if header == 'PF':
color = True
elif header == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('utf-8'))
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
file.close()
return data, scale
def read_camera_parameters(filename):
with open(filename) as f:
lines = f.readlines()
lines = [line.rstrip() for line in lines]
# extrinsics: line [1,5), 4x4 matrix
extrinsics = np.fromstring(' '.join(lines[1:5]), dtype=np.float32, sep=' ').reshape((4, 4))
# intrinsics: line [7-10), 3x3 matrix
intrinsics = np.fromstring(' '.join(lines[7:10]), dtype=np.float32, sep=' ').reshape((3, 3))
return intrinsics, extrinsics
def read_pair_file(filename):
data = []
with open(filename) as f:
num_viewpoint = int(f.readline())
# 49 viewpoints
for view_idx in range(num_viewpoint):
ref_view = int(f.readline().rstrip())
src_views = [int(x) for x in f.readline().rstrip().split()[1::2]]
data.append((ref_view, src_views))
return data
# read an image
def read_img(filename):
img = Image.open(filename)
# Crop image (Hard code dtu image size here)
left = 0
top = 0
right = 1600
bottom = 1184
img = img.crop((left, top, right, bottom))
# scale 0~255 to 0~1
np_img = np.array(img, dtype=np.uint8)
return np_img
# read a binary mask
def read_mask(filename):
return read_img(filename) > 0.5
# save a binary mask
def save_mask(filename, mask):
assert mask.dtype == np.bool
mask = mask.astype(np.uint8) * 255
Image.fromarray(mask).save(filename)
def save_pfm(filename, image, scale=1):
if not os.path.exists(os.path.dirname(filename)):
try:
os.makedirs(os.path.dirname(filename))
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
raise
file = open(filename, "wb")
color = None
image = np.flipud(image)
if image.dtype.name != 'float32':
raise Exception('Image dtype must be float32.')
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale
color = False
else:
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')
file.write('PF\n'.encode('utf-8') if color else 'Pf\n'.encode('utf-8'))
file.write('{} {}\n'.format(image.shape[1], image.shape[0]).encode('utf-8'))
endian = image.dtype.byteorder
if endian == '<' or endian == '=' and sys.byteorder == 'little':
scale = -scale
file.write(('%f\n' % scale).encode('utf-8'))
image.tofile(file)
file.close()
def write_depth_img(filename,depth):
if not os.path.exists(os.path.dirname(filename)):
try:
os.makedirs(os.path.dirname(filename))
except OSError as exc: # Guard against race condition
if exc.errno != errno.EEXIST:
raise
image = Image.fromarray((depth-500)/2).convert("L")
image.save(filename)
return 1
# project the reference point cloud into the source view, then project back
def reproject_with_depth(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src):
width, height = depth_ref.shape[1], depth_ref.shape[0]
## step1. project reference pixels to the source view
# reference view x, y
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
x_ref, y_ref = x_ref.reshape([-1]), y_ref.reshape([-1])
# reference 3D space
xyz_ref = np.matmul(np.linalg.inv(intrinsics_ref),
np.vstack((x_ref, y_ref, np.ones_like(x_ref))) * depth_ref.reshape([-1]))
# source 3D space
xyz_src = np.matmul(np.matmul(extrinsics_src, np.linalg.inv(extrinsics_ref)),
np.vstack((xyz_ref, np.ones_like(x_ref))))[:3]
# source view x, y
K_xyz_src = np.matmul(intrinsics_src, xyz_src)
xy_src = K_xyz_src[:2] / K_xyz_src[2:3]
## step2. reproject the source view points with source view depth estimation
# find the depth estimation of the source view
x_src = xy_src[0].reshape([height, width]).astype(np.float32)
y_src = xy_src[1].reshape([height, width]).astype(np.float32)
sampled_depth_src = cv2.remap(depth_src, x_src, y_src, interpolation=cv2.INTER_LINEAR)
# mask = sampled_depth_src > 0
# source 3D space
# NOTE that we should use sampled source-view depth_here to project back
xyz_src = np.matmul(np.linalg.inv(intrinsics_src),
np.vstack((xy_src, np.ones_like(x_ref))) * sampled_depth_src.reshape([-1]))
# reference 3D space
xyz_reprojected = np.matmul(np.matmul(extrinsics_ref, np.linalg.inv(extrinsics_src)),
np.vstack((xyz_src, np.ones_like(x_ref))))[:3]
# source view x, y, depth
depth_reprojected = xyz_reprojected[2].reshape([height, width]).astype(np.float32)
K_xyz_reprojected = np.matmul(intrinsics_ref, xyz_reprojected)
xy_reprojected = K_xyz_reprojected[:2] / K_xyz_reprojected[2:3]
x_reprojected = xy_reprojected[0].reshape([height, width]).astype(np.float32)
y_reprojected = xy_reprojected[1].reshape([height, width]).astype(np.float32)
return depth_reprojected, x_reprojected, y_reprojected, x_src, y_src
def check_geometric_consistency(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src):
width, height = depth_ref.shape[1], depth_ref.shape[0]
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
depth_reprojected, x2d_reprojected, y2d_reprojected, x2d_src, y2d_src = reproject_with_depth(depth_ref, intrinsics_ref, extrinsics_ref,
depth_src, intrinsics_src, extrinsics_src)
# check |p_reproj-p_1| < 1
dist = np.sqrt((x2d_reprojected - x_ref) ** 2 + (y2d_reprojected - y_ref) ** 2)
# check |d_reproj-d_1| / d_1 < 0.01
depth_diff = np.abs(depth_reprojected - depth_ref)
relative_depth_diff = depth_diff / depth_ref
mask = np.logical_and(dist < 0.5, relative_depth_diff < 0.01)
depth_reprojected[~mask] = 0
return mask, depth_reprojected, x2d_src, y2d_src
def filter_depth(dataset_root, scan, out_folder, plyfilename):
print("Starting fusion for:"+out_folder)
# the pair file
pair_file = os.path.join(dataset_root,'Cameras/pair.txt')
# for the final point cloud
vertexs = []
vertex_colors = []
pair_data = read_pair_file(pair_file)
nviews = len(pair_data)
# for each reference view and the corresponding source views
for ref_view, src_views in pair_data:
# load the camera parameters
ref_intrinsics, ref_extrinsics = read_camera_parameters(
os.path.join(dataset_root, 'Cameras/{:0>8}_cam.txt'.format(ref_view)))
# load the reference image
ref_img = read_img(os.path.join(dataset_root, "Rectified",scan, 'rect_{:03d}_3_r5000.png'.format(ref_view+1))) # Image start from 1.
# load the estimated depth of the reference view
ref_depth_est, scale = read_pfm(os.path.join(out_folder, 'depth_est/{:0>8}.pfm'.format(ref_view)))
# load the photometric mask of the reference view
confidence, scale = read_pfm(os.path.join(out_folder, 'confidence/{:0>8}.pfm'.format(ref_view)))
photo_mask = confidence > 0.9
all_srcview_depth_ests = []
all_srcview_x = []
all_srcview_y = []
all_srcview_geomask = []
# compute the geometric mask
geo_mask_sum = 0
for src_view in src_views:
# camera parameters of the source view
src_intrinsics, src_extrinsics = read_camera_parameters(
os.path.join(dataset_root, 'Cameras/{:0>8}_cam.txt'.format(src_view)))
# the estimated depth of the source view
src_depth_est, scale = read_pfm(os.path.join(out_folder, 'depth_est/{:0>8}.pfm'.format(src_view)))
geo_mask, depth_reprojected, x2d_src, y2d_src = check_geometric_consistency(ref_depth_est, ref_intrinsics, ref_extrinsics,
src_depth_est,
src_intrinsics, src_extrinsics)
geo_mask_sum += geo_mask.astype(np.int32)
all_srcview_depth_ests.append(depth_reprojected)
all_srcview_x.append(x2d_src)
all_srcview_y.append(y2d_src)
all_srcview_geomask.append(geo_mask)
depth_est_averaged = (sum(all_srcview_depth_ests) + ref_depth_est) / (geo_mask_sum + 1)
# at least 3 source views matched
geo_mask = geo_mask_sum >= 3
final_mask = np.logical_and(photo_mask, geo_mask)
os.makedirs(os.path.join(out_folder, "mask"), exist_ok=True)
save_mask(os.path.join(out_folder, "mask/{:0>8}_photo.png".format(ref_view)), photo_mask)
save_mask(os.path.join(out_folder, "mask/{:0>8}_geo.png".format(ref_view)), geo_mask)
save_mask(os.path.join(out_folder, "mask/{:0>8}_final.png".format(ref_view)), final_mask)
print("processing {}, ref-view{:0>2}, photo/geo/final-mask:{}/{}/{}".format(scan, ref_view,
photo_mask.mean(),
geo_mask.mean(), final_mask.mean()))
height, width = depth_est_averaged.shape[:2]
x, y = np.meshgrid(np.arange(0, width), np.arange(0, height))
# valid_points = np.logical_and(final_mask, ~used_mask[ref_view])
valid_points = final_mask
print("valid_points", valid_points.mean())
x, y, depth = x[valid_points], y[valid_points], depth_est_averaged[valid_points]
ref_img = np.array(ref_img)
color = ref_img[valid_points]
xyz_ref = np.matmul(np.linalg.inv(ref_intrinsics),
np.vstack((x, y, np.ones_like(x))) * depth)
xyz_world = np.matmul(np.linalg.inv(ref_extrinsics),
np.vstack((xyz_ref, np.ones_like(x))))[:3]
vertexs.append(xyz_world.transpose((1, 0)))
vertex_colors.append((color).astype(np.uint8))
vertexs = np.concatenate(vertexs, axis=0)
vertex_colors = np.concatenate(vertex_colors, axis=0)
vertexs = np.array([tuple(v) for v in vertexs], dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4')])
vertex_colors = np.array([tuple(v) for v in vertex_colors], dtype=[('red', 'u1'), ('green', 'u1'), ('blue', 'u1')])
vertex_all = np.empty(len(vertexs), vertexs.dtype.descr + vertex_colors.dtype.descr)
for prop in vertexs.dtype.names:
vertex_all[prop] = vertexs[prop]
for prop in vertex_colors.dtype.names:
vertex_all[prop] = vertex_colors[prop]
el = PlyElement.describe(vertex_all, 'vertex')
print("Saving the final model to", plyfilename)
PlyData([el], comments=['Model created by CVP-MVSNet.']).write(plyfilename)
print("Model saved.")
if __name__ == '__main__':
# step1. save all the depth maps and the masks in outputs directory
save_depth()
# Decomment following if you want to try the fusion provided by Xiaoyang Guo
# step2. fusion
# testlist = os.path.join(args.dataset_root,"scan_list_test.txt")
# with open(testlist) as f:
# scans = f.readlines()
# scans = [line.rstrip() for line in scans]
# for scan in scans:
# scan_id = int(scan[4:])
# outdir = args.outdir
# out_folder = os.path.join(outdir, scan)
# print("Start fusion for scan "+str(scan_id))
# filter_depth(args.dataset_root, scan, out_folder, os.path.join(outdir, 'cvpmvsnet{:0>3}_l3.ply'.format(scan_id)))
# print("completed.")