English | 简体中文
-
2020.02.26
v2.0
- We newly released version 2.0 which has been fully upgraded to dynamic graphics. It supports more than 20 segmentation models, 4 backbone networks, , 5 datasets and 9 losses:
- Segmentation models: ANN, BiSeNetV2, DANet, DeeplabV3, DeeplabV3+, FCN, FastSCNN, Gated-scnn, GCNet, HarDNet, OCRNet, PSPNet, UNet, UNet++, U2Net, Attention UNet, Decoupled SegNet, EMANet, DNLNet, ISANet
- Backbone networks: ResNet, HRNet, MobileNetV3, and Xception
- Datasets: Cityscapes, ADE20K, Pascal VOC, Pascal Context, COCO Stuff
- Losses: CrossEntropy Loss, BootstrappedCrossEntropy Loss, Dice Loss, BCE Loss, OhemCrossEntropyLoss, RelaxBoundaryLoss, OhemEdgeAttentionLoss, Lovasz Hinge Loss, Lovasz Softmax Loss
- We provide more than 50 high quality pre-trained models based on Cityscapes and Pascal Voc datasets.
- The new version support multi-card GPU parallel evaluation for more efficient metrics calculation. It also support multiple evaluation methods such as multi-scale evaluation/flip evaluation/sliding window evaluation.
- XPU model training including DeepLabv3, HRNet, UNet, is available now.
- We open source a semantic segmentation model based on the Hierarchical Multi-Scale Attention structure, and it reached 87% mIoU on the Cityscapes validation set.
- The dynamic graph mode supports model compression functions such as online quantification and pruning.
- The dynamic graph mode supports model export for high-performance deployment.
- We newly released version 2.0 which has been fully upgraded to dynamic graphics. It supports more than 20 segmentation models, 4 backbone networks, , 5 datasets and 9 losses:
-
2020.12.18
v2.0.0-rc
- Newly release 2.0-rc version, fully upgraded to dynamic graph. It supports 15+ segmentation models, 4 backbone networks, 3 datasets, and 4 types of loss functions:
- Segmentation models: ANN, BiSeNetV2, DANet, DeeplabV3, DeeplabV3+, FCN, FastSCNN, Gated-scnn, GCNet, OCRNet, PSPNet, UNet, and U2-Net, Attention UNet.
- Backbone networks: ResNet, HRNet, MobileNetV3, and Xception.
- Datasets: Cityscapes, ADE20K, and Pascal VOC.
- Loss: CrossEntropy Loss, BootstrappedCrossEntropy Loss, Dice Loss, BCE Loss.
- Provide 40+ high quality pre-trained models based on Cityscapes and Pascal Voc datasets.
- Support multi-card GPU parallel evaluation. This provides the efficient index calculation function. Support multiple evaluation methods such as multi-scale evaluation/flip evaluation/sliding window evaluation.
- Newly release 2.0-rc version, fully upgraded to dynamic graph. It supports 15+ segmentation models, 4 backbone networks, 3 datasets, and 4 types of loss functions:
-
2020.12.02
v0.8.0
- Add multi-scale/flipping/sliding-window inference.
- Add the fast multi-GPUs evaluation, and high-efficient metric calculation.
- Add Pascal VOC 2012 dataset.
- Add high-accuracy pre-trained models on Pascal VOC 2012, see detailed models.
- Support visualizing pseudo-color images in PNG format while predicting.
-
2020.10.28
v0.7.0
-
全面支持Paddle2.0-rc动态图模式,推出PaddleSeg动态图体验版
-
发布大量动态图模型,支持11个分割模型,4个骨干网络,3个数据集:
- 分割模型:ANN, BiSeNetV2, DANet, DeeplabV3, DeeplabV3+, FCN, FastSCNN, GCNet, OCRNet, PSPNet, UNet
- 骨干网络:ResNet, HRNet, MobileNetV3, Xception
- 数据集:Cityscapes, ADE20K, Pascal VOC
-
提供高精度骨干网络预训练模型以及基于Cityscapes数据集的语义分割预训练模型。Cityscapes精度超过82%。
-
-
2020.08.31
v0.6.0
- 丰富Deeplabv3p网络结构,新增ResNet-vd、MobileNetv3两种backbone,满足高性能与高精度场景,并提供基于Cityscapes和ImageNet的预训练模型4个。
- 新增高精度分割模型OCRNet,支持以HRNet作为backbone,提供基于Cityscapes的预训练模型,mIoU超过80%。
- 新增proposal free的实例分割模型Spatial Embedding,性能与精度均超越MaskRCNN。提供了基于kitti的预训练模型。
-
2020.05.12
v0.5.0
- 全面升级HumanSeg人像分割模型,新增超轻量级人像分割模型HumanSeg-lite支持移动端实时人像分割处理,并提供基于光流的视频分割后处理提升分割流畅性。
- 新增气象遥感分割方案,支持积雪识别、云检测等气象遥感场景。
- 新增Lovasz Loss,解决数据类别不均衡问题。
- 使用VisualDL 2.0作为训练可视化工具
-
2020.02.25
v0.4.0
-
2019.12.15
v0.3.0
- 新增HRNet分割网络,提供基于cityscapes和ImageNet的预训练模型8个
- 支持使用伪彩色标签进行训练/评估/预测,提升训练体验,并提供将灰度标注图转为伪彩色标注图的脚本
- 新增学习率warmup功能,支持与不同的学习率Decay策略配合使用
- 新增图像归一化操作的GPU化实现,进一步提升预测速度。
- 新增Python部署方案,更低成本完成工业级部署。
- 新增Paddle-Lite移动端部署方案,支持人像分割模型的移动端部署。
- 新增不同分割模型的预测性能数据Benchmark, 便于开发者提供模型选型性能参考。
-
2019.11.04
v0.2.0
- 新增PSPNet分割网络,提供基于COCO和cityscapes数据集的预训练模型4个。
- 新增Dice Loss、BCE Loss以及组合Loss配置,支持样本不均衡场景下的模型优化。
- 支持FP16混合精度训练以及动态Loss Scaling,在不损耗精度的情况下,训练速度提升30%+。
- 支持PaddlePaddle多卡多进程训练,多卡训练时训练速度提升15%+。
- 发布基于UNet的工业标记表盘分割模型。
-
2019.09.10
v0.1.0