-
Notifications
You must be signed in to change notification settings - Fork 539
/
Copy pathsolve.py
433 lines (348 loc) · 12.1 KB
/
solve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
#!/usr/bin/env python3
## -*- coding: utf-8 -*-
##
## Jonathan Salwan - 2018-10-26
##
## Description: Solution of the unbreakable challenge from the Google 2016 CTF.
## In this solution, we fully emulate the binary and we solve each branch
## to go through the good path.
##
## Output:
##
## $ time python3 ./solve.py
## [+] Loading 0x400040 - 0x400200
## [+] Loading 0x400200 - 0x40021c
## [+] Loading 0x400000 - 0x403df4
## [+] Loading 0x604000 - 0x604258
## [+] Loading 0x604018 - 0x6041e8
## [+] Loading 0x40021c - 0x400260
## [+] Loading 0x403590 - 0x40378c
## [+] Loading 0x000000 - 0x000000
## [+] Hooking strncpy
## [+] Hooking puts
## [+] Hooking printf
## [+] Hooking __libc_start_main
## [+] Hooking exit
## [+] Starting emulation.
## [+] __libc_start_main hooked
## [+] argv[0] = ./unbreakable-enterprise-product-activation
## [+] argv[1] = aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
## [+] strncpy hooked
## [+] puts hooked
## Thank you - product activated!
## [+] exit hooked
## Flag: CTF{0The1Quick2Brown3Fox4Jumped5Over6The7Lazy8Fox9}
## python3 solve.py 8.04s user 0.02s system 99% cpu 8.060 total
##
from __future__ import print_function
from triton import *
import random
import string
import sys
import lief
import os
TARGET = os.path.join(os.path.dirname(__file__), 'unbreakable-enterprise-product-activation')
DEBUG = True
# The debug function
def debug(s):
if DEBUG: print(s)
# Memory mapping
BASE_PLT = 0x10000000
BASE_ARGV = 0x20000000
BASE_STACK = 0x9fffffff
# These instruction conditions must set zf to 1.
conditions = [
0x402819,
0x402859,
0x4028A3,
0x4028F3,
0x402927,
0x402969,
0x4029A9,
0x4029E0,
0x402A1F,
0x402A56,
0x402A99,
0x402AD9,
0x402B07,
0x402B37,
0x402B79,
0x402BA7,
0x402BD7,
0x402C22,
0x402C69,
0x402CA9,
0x402CD7,
0x402D22,
0x402D73,
0x402DB0,
0x402DF9,
0x402E43,
0x402E89,
0x402EC9,
0x402EF7,
0x402F30,
0x402F79,
0x402FB9,
0x402FF9,
0x403039,
0x403079,
0x4030C5,
0x403109,
0x403149,
0x403189,
0x4031B7,
0x4031F9,
0x403239,
0x403270,
0x4032B0,
0x403302,
0x403337,
0x403379,
0x4033B9,
0x4033F0,
0x403427,
0x403472,
]
def getMemoryString(ctx, addr):
s = str()
index = 0
while ctx.getConcreteMemoryValue(addr+index):
c = chr(ctx.getConcreteMemoryValue(addr+index))
if c not in string.printable: c = ""
s += c
index += 1
return s
def getFormatString(ctx, addr):
return getMemoryString(ctx, addr) \
.replace("%s", "{}").replace("%d", "{:d}").replace("%#02x", "{:#02x}") \
.replace("%#x", "{:#x}").replace("%x", "{:x}").replace("%02X", "{:02x}") \
.replace("%c", "{:c}").replace("%02x", "{:02x}").replace("%ld", "{:d}") \
.replace("%*s", "").replace("%lX", "{:x}").replace("%08x", "{:08x}") \
.replace("%u", "{:d}").replace("%lu", "{:d}") \
# Simulate the printf() function
def printfHandler(ctx):
debug('[+] printf hooked')
# Get arguments
arg1 = getFormatString(ctx, ctx.getConcreteRegisterValue(ctx.registers.rdi))
arg2 = ctx.getConcreteRegisterValue(ctx.registers.rsi)
arg3 = ctx.getConcreteRegisterValue(ctx.registers.rdx)
arg4 = ctx.getConcreteRegisterValue(ctx.registers.rcx)
arg5 = ctx.getConcreteRegisterValue(ctx.registers.r8)
arg6 = ctx.getConcreteRegisterValue(ctx.registers.r9)
nbArgs = arg1.count("{")
args = [arg2, arg3, arg4, arg5, arg6][:nbArgs]
s = arg1.format(*args)
if DEBUG:
sys.stdout.write(s)
# Return value
return len(s)
# Simulate the putchar() function
def putcharHandler(ctx):
debug('[+] putchar hooked')
# Get arguments
arg1 = ctx.getConcreteRegisterValue(ctx.registers.rdi)
sys.stdout.write(chr(arg1) + '\n')
# Return value
return 2
# Simulate the puts() function
def putsHandler(ctx):
debug('[+] puts hooked')
# Get arguments
arg1 = getMemoryString(ctx, ctx.getConcreteRegisterValue(ctx.registers.rdi))
sys.stdout.write(arg1 + '\n')
# Return value
return len(arg1) + 1
# Simulate the strncpy() function
def strncpyHandler(ctx):
debug('[+] strncpy hooked')
dst = ctx.getConcreteRegisterValue(ctx.registers.rdi)
src = ctx.getConcreteRegisterValue(ctx.registers.rsi)
cnt = ctx.getConcreteRegisterValue(ctx.registers.rdx)
for index in range(cnt):
dmem = MemoryAccess(dst + index, 1)
smem = MemoryAccess(src + index, 1)
cell = ctx.getMemoryAst(smem)
expr = ctx.newSymbolicExpression(cell, "strncpy byte")
ctx.setConcreteMemoryValue(dmem, cell.evaluate())
ctx.assignSymbolicExpressionToMemory(expr, dmem)
return dst
def exitHandler(ctx):
debug('[+] exit hooked')
ret = ctx.getConcreteRegisterValue(ctx.registers.rdi)
ast = ctx.getAstContext()
pco = ctx.getPathPredicate()
# Ask for a new model which set all symbolic variables to ascii printable characters
mod = ctx.getModel(ast.land(
[pco] +
[ast.variable(ctx.getSymbolicVariable(0)) == ord('C')] +
[ast.variable(ctx.getSymbolicVariable(1)) == ord('T')] +
[ast.variable(ctx.getSymbolicVariable(2)) == ord('F')] +
[ast.variable(ctx.getSymbolicVariable(3)) == ord('{')] +
[ast.variable(ctx.getSymbolicVariable(50)) == ord('}')] +
[ast.variable(ctx.getSymbolicVariable(x)) >= 0x30 for x in range(4, 49)] +
[ast.variable(ctx.getSymbolicVariable(x)) <= 0x7a for x in range(4, 49)] +
[ast.variable(ctx.getSymbolicVariable(x)) != 0x00 for x in range(4, 49)]
))
flag = str()
for k, v in sorted(mod.items()):
flag += chr(v.getValue())
print('Flag: %s' %(flag))
sys.exit(not (flag == 'CTF{0The1Quick2Brown3Fox4Jumped5Over6The7Lazy8Fox9}'))
def libcMainHandler(ctx):
debug('[+] __libc_start_main hooked')
# Get arguments
main = ctx.getConcreteRegisterValue(ctx.registers.rdi)
# Push the return value to jump into the main() function
ctx.setConcreteRegisterValue(ctx.registers.rsp, ctx.getConcreteRegisterValue(ctx.registers.rsp)-CPUSIZE.QWORD)
ret2main = MemoryAccess(ctx.getConcreteRegisterValue(ctx.registers.rsp), CPUSIZE.QWORD)
ctx.setConcreteMemoryValue(ret2main, main)
# Setup argc / argv
ctx.concretizeRegister(ctx.registers.rdi)
ctx.concretizeRegister(ctx.registers.rsi)
argvs = [
bytes(TARGET.encode('utf-8')), # argv[0]
bytes(b'a' * 70), # argv[1]
]
# Define argc / argv
base = BASE_ARGV
addrs = list()
index = 0
for argv in argvs:
addrs.append(base)
ctx.setConcreteMemoryAreaValue(base, argv+b'\x00')
base += len(argv)+1
debug('[+] argv[%d] = %s' %(index, argv))
index += 1
argc = len(argvs)
argv = base
for addr in addrs:
ctx.setConcreteMemoryValue(MemoryAccess(base, CPUSIZE.QWORD), addr)
base += CPUSIZE.QWORD
ctx.setConcreteRegisterValue(ctx.registers.rdi, argc)
ctx.setConcreteRegisterValue(ctx.registers.rsi, argv)
# Symbolize the first 51 bytes of the argv[1]
argv1 = ctx.getConcreteMemoryValue(MemoryAccess(ctx.getConcreteRegisterValue(ctx.registers.rsi) + 8, CPUSIZE.QWORD))
for index in range(51):
var = ctx.symbolizeMemory(MemoryAccess(argv1+index, CPUSIZE.BYTE))
return 0
# Functions to emulate
customRelocation = [
('__libc_start_main', libcMainHandler, BASE_PLT + 0),
('exit', exitHandler, BASE_PLT + 1),
('printf', printfHandler, BASE_PLT + 2),
('putchar', putcharHandler, BASE_PLT + 3),
('puts', putsHandler, BASE_PLT + 4),
('strncpy', strncpyHandler, BASE_PLT + 5),
]
def hookingHandler(ctx):
pc = ctx.getConcreteRegisterValue(ctx.registers.rip)
for rel in customRelocation:
if rel[2] == pc:
# Emulate the routine and the return value
ret_value = rel[1](ctx)
if ret_value is not None:
ctx.setConcreteRegisterValue(ctx.registers.rax, ret_value)
# Get the return address
ret_addr = ctx.getConcreteMemoryValue(MemoryAccess(ctx.getConcreteRegisterValue(ctx.registers.rsp), CPUSIZE.QWORD))
# Hijack RIP to skip the call
ctx.setConcreteRegisterValue(ctx.registers.rip, ret_addr)
# Restore RSP (simulate the ret)
ctx.setConcreteRegisterValue(ctx.registers.rsp, ctx.getConcreteRegisterValue(ctx.registers.rsp)+CPUSIZE.QWORD)
return
# Emulate the binary.
def emulate(ctx, pc):
global conditions
count = 0
while pc:
# Fetch opcodes
opcodes = ctx.getConcreteMemoryAreaValue(pc, 16)
# Create the Triton instruction
instruction = Instruction()
instruction.setOpcode(opcodes)
instruction.setAddress(pc)
# Process
if ctx.processing(instruction) == EXCEPTION.FAULT_UD:
debug('[-] Instruction not supported: %s' %(str(instruction)))
break
count += 1
#print(instruction)
if instruction.getType() == OPCODE.X86.HLT:
break
# Simulate routines
hookingHandler(ctx)
if instruction.getAddress() in conditions:
zf = ctx.getSymbolicRegister(ctx.registers.zf).getAst()
ast = ctx.getAstContext()
ctx.pushPathConstraint(zf == 1)
mod = ctx.getModel(ctx.getPathPredicate())
for k,v in list(mod.items()):
ctx.setConcreteVariableValue(ctx.getSymbolicVariable(v.getId()), v.getValue())
# Next
pc = ctx.getConcreteRegisterValue(ctx.registers.rip)
debug('[+] Instruction executed: %d' %(count))
return
def loadBinary(ctx, binary):
# Map the binary into the memory
phdrs = binary.segments
for phdr in phdrs:
size = phdr.physical_size
vaddr = phdr.virtual_address
debug('[+] Loading 0x%06x - 0x%06x' %(vaddr, vaddr+size))
ctx.setConcreteMemoryAreaValue(vaddr, list(phdr.content))
return
def makeRelocation(ctx, binary):
# Perform our own relocations
try:
for rel in binary.pltgot_relocations:
symbolName = rel.symbol.name
symbolRelo = rel.address
for crel in customRelocation:
if symbolName == crel[0]:
debug('[+] Hooking %s' %(symbolName))
ctx.setConcreteMemoryValue(MemoryAccess(symbolRelo, CPUSIZE.QWORD), crel[2])
except:
pass
# Perform our own relocations
try:
for rel in binary.dynamic_relocations:
symbolName = rel.symbol.name
symbolRelo = rel.address
for crel in customRelocation:
if symbolName == crel[0]:
debug('[+] Hooking %s' %(symbolName))
ctx.setConcreteMemoryValue(MemoryAccess(symbolRelo, CPUSIZE.QWORD), crel[2])
except:
pass
return
def run(ctx, binary):
# Define a fake stack
ctx.setConcreteRegisterValue(ctx.registers.rbp, BASE_STACK)
ctx.setConcreteRegisterValue(ctx.registers.rsp, BASE_STACK)
# Let's emulate the binary from the entry point
debug('[+] Starting emulation.')
emulate(ctx, binary.entrypoint)
debug('[+] Emulation done.')
return
def main():
# Get a Triton context
ctx = TritonContext()
# Set the architecture
ctx.setArchitecture(ARCH.X86_64)
# Set optimization
ctx.setMode(MODE.ALIGNED_MEMORY, True)
ctx.setMode(MODE.ONLY_ON_SYMBOLIZED, True)
# AST representation as Python syntax
ctx.setAstRepresentationMode(AST_REPRESENTATION.SMT)
# Parse the binary
binary = lief.parse(TARGET)
# Load the binary
loadBinary(ctx, binary)
# Perform our own relocations
makeRelocation(ctx, binary)
# Init and emulate
run(ctx, binary)
return -1
if __name__ == '__main__':
retValue = main()
sys.exit(retValue)