-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathmatmul.jl
736 lines (665 loc) · 27.5 KB
/
matmul.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
# This file is a part of Julia. License is MIT: https://julialang.org/license
# matmul.jl: Everything to do with dense matrix multiplication
matprod(x, y) = x*y + x*y
# multiply by diagonal matrix as vector
function scale!(C::AbstractMatrix, A::AbstractMatrix, b::AbstractVector)
m, n = size(A)
if size(A) != size(C)
throw(DimensionMismatch("size of A, $(size(A)), does not match size of C, $(size(C))"))
end
if n != length(b)
throw(DimensionMismatch("second dimension of A, $n, does not match length of b, $(length(b))"))
end
@inbounds for j = 1:n
bj = b[j]
for i = 1:m
C[i,j] = A[i,j]*bj
end
end
C
end
function scale!(C::AbstractMatrix, b::AbstractVector, A::AbstractMatrix)
m, n = size(A)
if size(A) != size(C)
throw(DimensionMismatch("size of A, $(size(A)), does not match size of C, $(size(C))"))
end
if m != length(b)
throw(DimensionMismatch("first dimension of A, $m, does not match length of b, $(length(b))"))
end
@inbounds for j = 1:n, i = 1:m
C[i,j] = A[i,j]*b[i]
end
C
end
# Dot products
vecdot(x::Union{DenseArray{T},StridedVector{T}}, y::Union{DenseArray{T},StridedVector{T}}) where {T<:BlasReal} = BLAS.dot(x, y)
vecdot(x::Union{DenseArray{T},StridedVector{T}}, y::Union{DenseArray{T},StridedVector{T}}) where {T<:BlasComplex} = BLAS.dotc(x, y)
function dot(x::Vector{T}, rx::Union{UnitRange{TI},AbstractRange{TI}}, y::Vector{T}, ry::Union{UnitRange{TI},AbstractRange{TI}}) where {T<:BlasReal,TI<:Integer}
if length(rx) != length(ry)
throw(DimensionMismatch("length of rx, $(length(rx)), does not equal length of ry, $(length(ry))"))
end
if minimum(rx) < 1 || maximum(rx) > length(x)
throw(BoundsError(x, rx))
end
if minimum(ry) < 1 || maximum(ry) > length(y)
throw(BoundsError(y, ry))
end
BLAS.dot(length(rx), pointer(x)+(first(rx)-1)*sizeof(T), step(rx), pointer(y)+(first(ry)-1)*sizeof(T), step(ry))
end
function dot(x::Vector{T}, rx::Union{UnitRange{TI},AbstractRange{TI}}, y::Vector{T}, ry::Union{UnitRange{TI},AbstractRange{TI}}) where {T<:BlasComplex,TI<:Integer}
if length(rx) != length(ry)
throw(DimensionMismatch("length of rx, $(length(rx)), does not equal length of ry, $(length(ry))"))
end
if minimum(rx) < 1 || maximum(rx) > length(x)
throw(BoundsError(x, rx))
end
if minimum(ry) < 1 || maximum(ry) > length(y)
throw(BoundsError(y, ry))
end
BLAS.dotc(length(rx), pointer(x)+(first(rx)-1)*sizeof(T), step(rx), pointer(y)+(first(ry)-1)*sizeof(T), step(ry))
end
At_mul_B(x::StridedVector{T}, y::StridedVector{T}) where {T<:BlasComplex} = BLAS.dotu(x, y)
# Matrix-vector multiplication
function (*)(A::StridedMatrix{T}, x::StridedVector{S}) where {T<:BlasFloat,S}
TS = promote_op(matprod, T, S)
A_mul_B!(similar(x, TS, size(A,1)), A, convert(AbstractVector{TS}, x))
end
function (*)(A::AbstractMatrix{T}, x::AbstractVector{S}) where {T,S}
TS = promote_op(matprod, T, S)
A_mul_B!(similar(x,TS,size(A,1)),A,x)
end
# these will throw a DimensionMismatch unless B has 1 row (or 1 col for transposed case):
A_mul_Bt(a::AbstractVector, B::AbstractMatrix) = A_mul_Bt(reshape(a,length(a),1),B)
A_mul_Bt(A::AbstractMatrix, b::AbstractVector) = A_mul_Bt(A,reshape(b,length(b),1))
A_mul_Bc(a::AbstractVector, B::AbstractMatrix) = A_mul_Bc(reshape(a,length(a),1),B)
A_mul_Bc(A::AbstractMatrix, b::AbstractVector) = A_mul_Bc(A,reshape(b,length(b),1))
(*)(a::AbstractVector, B::AbstractMatrix) = reshape(a,length(a),1)*B
A_mul_B!(y::StridedVector{T}, A::StridedVecOrMat{T}, x::StridedVector{T}) where {T<:BlasFloat} = gemv!(y, 'N', A, x)
for elty in (Float32,Float64)
@eval begin
function A_mul_B!(y::StridedVector{Complex{$elty}}, A::StridedVecOrMat{Complex{$elty}}, x::StridedVector{$elty})
Afl = reinterpret($elty,A,(2size(A,1),size(A,2)))
yfl = reinterpret($elty,y)
gemv!(yfl,'N',Afl,x)
return y
end
end
end
A_mul_B!(y::AbstractVector, A::AbstractVecOrMat, x::AbstractVector) = generic_matvecmul!(y, 'N', A, x)
function At_mul_B(A::StridedMatrix{T}, x::StridedVector{S}) where {T<:BlasFloat,S}
TS = promote_op(matprod, T, S)
At_mul_B!(similar(x,TS,size(A,2)), A, convert(AbstractVector{TS}, x))
end
function At_mul_B(A::AbstractMatrix{T}, x::AbstractVector{S}) where {T,S}
TS = promote_op(matprod, T, S)
At_mul_B!(similar(x,TS,size(A,2)), A, x)
end
At_mul_B!(y::StridedVector{T}, A::StridedVecOrMat{T}, x::StridedVector{T}) where {T<:BlasFloat} = gemv!(y, 'T', A, x)
At_mul_B!(y::AbstractVector, A::AbstractVecOrMat, x::AbstractVector) = generic_matvecmul!(y, 'T', A, x)
function Ac_mul_B(A::StridedMatrix{T}, x::StridedVector{S}) where {T<:BlasFloat,S}
TS = promote_op(matprod, T, S)
Ac_mul_B!(similar(x,TS,size(A,2)),A,convert(AbstractVector{TS},x))
end
function Ac_mul_B(A::AbstractMatrix{T}, x::AbstractVector{S}) where {T,S}
TS = promote_op(matprod, T, S)
Ac_mul_B!(similar(x,TS,size(A,2)), A, x)
end
Ac_mul_B!(y::StridedVector{T}, A::StridedVecOrMat{T}, x::StridedVector{T}) where {T<:BlasReal} = At_mul_B!(y, A, x)
Ac_mul_B!(y::StridedVector{T}, A::StridedVecOrMat{T}, x::StridedVector{T}) where {T<:BlasComplex} = gemv!(y, 'C', A, x)
Ac_mul_B!(y::AbstractVector, A::AbstractVecOrMat, x::AbstractVector) = generic_matvecmul!(y, 'C', A, x)
# Matrix-matrix multiplication
"""
```
*(A::AbstractMatrix, B::AbstractMatrix)
```
Matrix multiplication.
# Examples
```jldoctest
julia> [1 1; 0 1] * [1 0; 1 1]
2×2 Array{Int64,2}:
2 1
1 1
```
"""
function (*)(A::AbstractMatrix{T}, B::AbstractMatrix{S}) where {T,S}
TS = promote_op(matprod, T, S)
A_mul_B!(similar(B, TS, (size(A,1), size(B,2))), A, B)
end
A_mul_B!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{T}) where {T<:BlasFloat} = gemm_wrapper!(C, 'N', 'N', A, B)
for elty in (Float32,Float64)
@eval begin
function A_mul_B!(C::StridedMatrix{Complex{$elty}}, A::StridedVecOrMat{Complex{$elty}}, B::StridedVecOrMat{$elty})
Afl = reinterpret($elty, A, (2size(A,1), size(A,2)))
Cfl = reinterpret($elty, C, (2size(C,1), size(C,2)))
gemm_wrapper!(Cfl, 'N', 'N', Afl, B)
return C
end
end
end
"""
A_mul_B!(Y, A, B) -> Y
Calculates the matrix-matrix or matrix-vector product ``A⋅B`` and stores the result in `Y`,
overwriting the existing value of `Y`. Note that `Y` must not be aliased with either `A` or
`B`.
# Examples
```jldoctest
julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; Y = similar(B); A_mul_B!(Y, A, B);
julia> Y
2×2 Array{Float64,2}:
3.0 3.0
7.0 7.0
```
"""
A_mul_B!(C::AbstractMatrix, A::AbstractVecOrMat, B::AbstractVecOrMat) = generic_matmatmul!(C, 'N', 'N', A, B)
function At_mul_B(A::AbstractMatrix{T}, B::AbstractMatrix{S}) where {T,S}
TS = promote_op(matprod, T, S)
At_mul_B!(similar(B, TS, (size(A,2), size(B,2))), A, B)
end
At_mul_B!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{T}) where {T<:BlasFloat} = A===B ? syrk_wrapper!(C, 'T', A) : gemm_wrapper!(C, 'T', 'N', A, B)
At_mul_B!(C::AbstractMatrix, A::AbstractVecOrMat, B::AbstractVecOrMat) = generic_matmatmul!(C, 'T', 'N', A, B)
function A_mul_Bt(A::AbstractMatrix{T}, B::AbstractMatrix{S}) where {T,S}
TS = promote_op(matprod, T, S)
A_mul_Bt!(similar(B, TS, (size(A,1), size(B,1))), A, B)
end
A_mul_Bt!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{T}) where {T<:BlasFloat} = A===B ? syrk_wrapper!(C, 'N', A) : gemm_wrapper!(C, 'N', 'T', A, B)
for elty in (Float32,Float64)
@eval begin
function A_mul_Bt!(C::StridedMatrix{Complex{$elty}}, A::StridedVecOrMat{Complex{$elty}}, B::StridedVecOrMat{$elty})
Afl = reinterpret($elty, A, (2size(A,1), size(A,2)))
Cfl = reinterpret($elty, C, (2size(C,1), size(C,2)))
gemm_wrapper!(Cfl, 'N', 'T', Afl, B)
return C
end
end
end
A_mul_Bt!(C::AbstractVecOrMat, A::AbstractVecOrMat, B::AbstractVecOrMat) = generic_matmatmul!(C, 'N', 'T', A, B)
function At_mul_Bt(A::AbstractMatrix{T}, B::AbstractVecOrMat{S}) where {T,S}
TS = promote_op(matprod, T, S)
At_mul_Bt!(similar(B, TS, (size(A,2), size(B,1))), A, B)
end
At_mul_Bt!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{T}) where {T<:BlasFloat} = gemm_wrapper!(C, 'T', 'T', A, B)
At_mul_Bt!(C::AbstractMatrix, A::AbstractVecOrMat, B::AbstractVecOrMat) = generic_matmatmul!(C, 'T', 'T', A, B)
Ac_mul_B(A::StridedMatrix{T}, B::StridedMatrix{T}) where {T<:BlasReal} = At_mul_B(A, B)
Ac_mul_B!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{T}) where {T<:BlasReal} = At_mul_B!(C, A, B)
function Ac_mul_B(A::AbstractMatrix{T}, B::AbstractMatrix{S}) where {T,S}
TS = promote_op(matprod, T, S)
Ac_mul_B!(similar(B, TS, (size(A,2), size(B,2))), A, B)
end
Ac_mul_B!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{T}) where {T<:BlasComplex} = A===B ? herk_wrapper!(C,'C',A) : gemm_wrapper!(C,'C', 'N', A, B)
Ac_mul_B!(C::AbstractMatrix, A::AbstractVecOrMat, B::AbstractVecOrMat) = generic_matmatmul!(C, 'C', 'N', A, B)
A_mul_Bc(A::StridedMatrix{<:BlasFloat}, B::StridedMatrix{<:BlasReal}) = A_mul_Bt(A, B)
A_mul_Bc!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{<:BlasReal}) where {T<:BlasFloat} = A_mul_Bt!(C, A, B)
function A_mul_Bc(A::AbstractMatrix{T}, B::AbstractMatrix{S}) where {T,S}
TS = promote_op(matprod, T, S)
A_mul_Bc!(similar(B,TS,(size(A,1),size(B,1))),A,B)
end
A_mul_Bc!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{T}) where {T<:BlasComplex} = A===B ? herk_wrapper!(C, 'N', A) : gemm_wrapper!(C, 'N', 'C', A, B)
A_mul_Bc!(C::AbstractMatrix, A::AbstractVecOrMat, B::AbstractVecOrMat) = generic_matmatmul!(C, 'N', 'C', A, B)
Ac_mul_Bc(A::AbstractMatrix{T}, B::AbstractMatrix{S}) where {T,S} =
Ac_mul_Bc!(similar(B, promote_op(matprod, T, S), (size(A,2), size(B,1))), A, B)
Ac_mul_Bc!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{T}) where {T<:BlasFloat} = gemm_wrapper!(C, 'C', 'C', A, B)
Ac_mul_Bc!(C::AbstractMatrix, A::AbstractVecOrMat, B::AbstractVecOrMat) = generic_matmatmul!(C, 'C', 'C', A, B)
Ac_mul_Bt!(C::AbstractMatrix, A::AbstractVecOrMat, B::AbstractVecOrMat) = generic_matmatmul!(C, 'C', 'T', A, B)
# Supporting functions for matrix multiplication
function copytri!(A::AbstractMatrix, uplo::Char, conjugate::Bool=false)
n = checksquare(A)
if uplo == 'U'
for i = 1:(n-1), j = (i+1):n
A[j,i] = conjugate ? conj(A[i,j]) : A[i,j]
end
elseif uplo == 'L'
for i = 1:(n-1), j = (i+1):n
A[i,j] = conjugate ? conj(A[j,i]) : A[j,i]
end
else
throw(ArgumentError("uplo argument must be 'U' (upper) or 'L' (lower), got $uplo"))
end
A
end
function gemv!(y::StridedVector{T}, tA::Char, A::StridedVecOrMat{T}, x::StridedVector{T}) where T<:BlasFloat
mA, nA = lapack_size(tA, A)
if nA != length(x)
throw(DimensionMismatch("second dimension of A, $nA, does not match length of x, $(length(x))"))
end
if mA != length(y)
throw(DimensionMismatch("first dimension of A, $mA, does not match length of y, $(length(y))"))
end
if mA == 0
return y
end
if nA == 0
return fill!(y,0)
end
stride(A, 1) == 1 && stride(A, 2) >= size(A, 1) && return BLAS.gemv!(tA, one(T), A, x, zero(T), y)
return generic_matvecmul!(y, tA, A, x)
end
function syrk_wrapper!(C::StridedMatrix{T}, tA::Char, A::StridedVecOrMat{T}) where T<:BlasFloat
nC = checksquare(C)
if tA == 'T'
(nA, mA) = size(A,1), size(A,2)
tAt = 'N'
else
(mA, nA) = size(A,1), size(A,2)
tAt = 'T'
end
if nC != mA
throw(DimensionMismatch("output matrix has size: $(nC), but should have size $(mA)"))
end
if mA == 0 || nA == 0
return fill!(C,0)
end
if mA == 2 && nA == 2
return matmul2x2!(C,tA,tAt,A,A)
end
if mA == 3 && nA == 3
return matmul3x3!(C,tA,tAt,A,A)
end
if stride(A, 1) == stride(C, 1) == 1 && stride(A, 2) >= size(A, 1) && stride(C, 2) >= size(C, 1)
return copytri!(BLAS.syrk!('U', tA, one(T), A, zero(T), C), 'U')
end
return generic_matmatmul!(C, tA, tAt, A, A)
end
function herk_wrapper!(C::Union{StridedMatrix{T}, StridedMatrix{Complex{T}}}, tA::Char, A::Union{StridedVecOrMat{T}, StridedVecOrMat{Complex{T}}}) where T<:BlasReal
nC = checksquare(C)
if tA == 'C'
(nA, mA) = size(A,1), size(A,2)
tAt = 'N'
else
(mA, nA) = size(A,1), size(A,2)
tAt = 'C'
end
if nC != mA
throw(DimensionMismatch("output matrix has size: $(nC), but should have size $(mA)"))
end
if mA == 0 || nA == 0
return fill!(C,0)
end
if mA == 2 && nA == 2
return matmul2x2!(C,tA,tAt,A,A)
end
if mA == 3 && nA == 3
return matmul3x3!(C,tA,tAt,A,A)
end
# Result array does not need to be initialized as long as beta==0
# C = Matrix{T}(mA, mA)
if stride(A, 1) == stride(C, 1) == 1 && stride(A, 2) >= size(A, 1) && stride(C, 2) >= size(C, 1)
return copytri!(BLAS.herk!('U', tA, one(T), A, zero(T), C), 'U', true)
end
return generic_matmatmul!(C,tA, tAt, A, A)
end
function gemm_wrapper(tA::Char, tB::Char,
A::StridedVecOrMat{T},
B::StridedVecOrMat{T}) where T<:BlasFloat
mA, nA = lapack_size(tA, A)
mB, nB = lapack_size(tB, B)
C = similar(B, T, mA, nB)
gemm_wrapper!(C, tA, tB, A, B)
end
function gemm_wrapper!(C::StridedVecOrMat{T}, tA::Char, tB::Char,
A::StridedVecOrMat{T},
B::StridedVecOrMat{T}) where T<:BlasFloat
mA, nA = lapack_size(tA, A)
mB, nB = lapack_size(tB, B)
if nA != mB
throw(DimensionMismatch("A has dimensions ($mA,$nA) but B has dimensions ($mB,$nB)"))
end
if C === A || B === C
throw(ArgumentError("output matrix must not be aliased with input matrix"))
end
if mA == 0 || nA == 0 || nB == 0
if size(C) != (mA, nB)
throw(DimensionMismatch("C has dimensions $(size(C)), should have ($mA,$nB)"))
end
return fill!(C,0)
end
if mA == 2 && nA == 2 && nB == 2
return matmul2x2!(C,tA,tB,A,B)
end
if mA == 3 && nA == 3 && nB == 3
return matmul3x3!(C,tA,tB,A,B)
end
if stride(A, 1) == stride(B, 1) == stride(C, 1) == 1 && stride(A, 2) >= size(A, 1) && stride(B, 2) >= size(B, 1) && stride(C, 2) >= size(C, 1)
return BLAS.gemm!(tA, tB, one(T), A, B, zero(T), C)
end
generic_matmatmul!(C, tA, tB, A, B)
end
# blas.jl defines matmul for floats; other integer and mixed precision
# cases are handled here
lapack_size(t::Char, M::AbstractVecOrMat) = (size(M, t=='N' ? 1 : 2), size(M, t=='N' ? 2 : 1))
function copy!(B::AbstractVecOrMat, ir_dest::UnitRange{Int}, jr_dest::UnitRange{Int}, tM::Char, M::AbstractVecOrMat, ir_src::UnitRange{Int}, jr_src::UnitRange{Int})
if tM == 'N'
copy!(B, ir_dest, jr_dest, M, ir_src, jr_src)
else
Base.copy_transpose!(B, ir_dest, jr_dest, M, jr_src, ir_src)
tM == 'C' && conj!(B)
end
B
end
function copy_transpose!(B::AbstractMatrix, ir_dest::UnitRange{Int}, jr_dest::UnitRange{Int}, tM::Char, M::AbstractVecOrMat, ir_src::UnitRange{Int}, jr_src::UnitRange{Int})
if tM == 'N'
Base.copy_transpose!(B, ir_dest, jr_dest, M, ir_src, jr_src)
else
copy!(B, ir_dest, jr_dest, M, jr_src, ir_src)
tM == 'C' && conj!(B)
end
B
end
# TODO: It will be faster for large matrices to convert to float,
# call BLAS, and convert back to required type.
# NOTE: the generic version is also called as fallback for
# strides != 1 cases
function generic_matvecmul!(C::AbstractVector{R}, tA, A::AbstractVecOrMat, B::AbstractVector) where R
mB = length(B)
mA, nA = lapack_size(tA, A)
if mB != nA
throw(DimensionMismatch("matrix A has dimensions ($mA,$nA), vector B has length $mB"))
end
if mA != length(C)
throw(DimensionMismatch("result C has length $(length(C)), needs length $mA"))
end
Astride = size(A, 1)
if tA == 'T' # fastest case
for k = 1:mA
aoffs = (k-1)*Astride
if mB == 0
s = zero(R)
else
s = zero(A[aoffs + 1]*B[1] + A[aoffs + 1]*B[1])
end
for i = 1:nA
s += A[aoffs+i].'B[i]
end
C[k] = s
end
elseif tA == 'C'
for k = 1:mA
aoffs = (k-1)*Astride
if mB == 0
s = zero(R)
else
s = zero(A[aoffs + 1]*B[1] + A[aoffs + 1]*B[1])
end
for i = 1:nA
s += A[aoffs + i]'B[i]
end
C[k] = s
end
else # tA == 'N'
for i = 1:mA
if mB == 0
C[i] = zero(R)
else
C[i] = zero(A[i]*B[1] + A[i]*B[1])
end
end
for k = 1:mB
aoffs = (k-1)*Astride
b = B[k]
for i = 1:mA
C[i] += A[aoffs + i] * b
end
end
end
C
end
function generic_matmatmul(tA, tB, A::AbstractVecOrMat{T}, B::AbstractMatrix{S}) where {T,S}
mA, nA = lapack_size(tA, A)
mB, nB = lapack_size(tB, B)
C = similar(B, promote_op(matprod, T, S), mA, nB)
generic_matmatmul!(C, tA, tB, A, B)
end
const tilebufsize = 10800 # Approximately 32k/3
const Abuf = Vector{UInt8}(tilebufsize)
const Bbuf = Vector{UInt8}(tilebufsize)
const Cbuf = Vector{UInt8}(tilebufsize)
function generic_matmatmul!(C::AbstractMatrix, tA, tB, A::AbstractMatrix, B::AbstractMatrix)
mA, nA = lapack_size(tA, A)
mB, nB = lapack_size(tB, B)
mC, nC = size(C)
if mA == nA == mB == nB == mC == nC == 2
return matmul2x2!(C, tA, tB, A, B)
end
if mA == nA == mB == nB == mC == nC == 3
return matmul3x3!(C, tA, tB, A, B)
end
_generic_matmatmul!(C, tA, tB, A, B)
end
generic_matmatmul!(C::AbstractVecOrMat, tA, tB, A::AbstractVecOrMat, B::AbstractVecOrMat) = _generic_matmatmul!(C, tA, tB, A, B)
function _generic_matmatmul!(C::AbstractVecOrMat{R}, tA, tB, A::AbstractVecOrMat{T}, B::AbstractVecOrMat{S}) where {T,S,R}
mA, nA = lapack_size(tA, A)
mB, nB = lapack_size(tB, B)
if mB != nA
throw(DimensionMismatch("matrix A has dimensions ($mA,$nA), matrix B has dimensions ($mB,$nB)"))
end
if size(C,1) != mA || size(C,2) != nB
throw(DimensionMismatch("result C has dimensions $(size(C)), needs ($mA,$nB)"))
end
if isempty(A) || isempty(B)
return fill!(C, zero(R))
end
tile_size = 0
if isbits(R) && isbits(T) && isbits(S) && (tA == 'N' || tB != 'N')
tile_size = floor(Int, sqrt(tilebufsize / max(sizeof(R), sizeof(S), sizeof(T))))
end
@inbounds begin
if tile_size > 0
sz = (tile_size, tile_size)
Atile = unsafe_wrap(Array, convert(Ptr{T}, pointer(Abuf)), sz)
Btile = unsafe_wrap(Array, convert(Ptr{S}, pointer(Bbuf)), sz)
z1 = zero(A[1, 1]*B[1, 1] + A[1, 1]*B[1, 1])
z = convert(promote_type(typeof(z1), R), z1)
if mA < tile_size && nA < tile_size && nB < tile_size
Base.copy_transpose!(Atile, 1:nA, 1:mA, tA, A, 1:mA, 1:nA)
copy!(Btile, 1:mB, 1:nB, tB, B, 1:mB, 1:nB)
for j = 1:nB
boff = (j-1)*tile_size
for i = 1:mA
aoff = (i-1)*tile_size
s = z
for k = 1:nA
s += Atile[aoff+k] * Btile[boff+k]
end
C[i,j] = s
end
end
else
Ctile = unsafe_wrap(Array, convert(Ptr{R}, pointer(Cbuf)), sz)
for jb = 1:tile_size:nB
jlim = min(jb+tile_size-1,nB)
jlen = jlim-jb+1
for ib = 1:tile_size:mA
ilim = min(ib+tile_size-1,mA)
ilen = ilim-ib+1
fill!(Ctile, z)
for kb = 1:tile_size:nA
klim = min(kb+tile_size-1,mB)
klen = klim-kb+1
Base.copy_transpose!(Atile, 1:klen, 1:ilen, tA, A, ib:ilim, kb:klim)
copy!(Btile, 1:klen, 1:jlen, tB, B, kb:klim, jb:jlim)
for j=1:jlen
bcoff = (j-1)*tile_size
for i = 1:ilen
aoff = (i-1)*tile_size
s = z
for k = 1:klen
s += Atile[aoff+k] * Btile[bcoff+k]
end
Ctile[bcoff+i] += s
end
end
end
copy!(C, ib:ilim, jb:jlim, Ctile, 1:ilen, 1:jlen)
end
end
end
else
# Multiplication for non-plain-data uses the naive algorithm
if tA == 'N'
if tB == 'N'
for i = 1:mA, j = 1:nB
z2 = zero(A[i, 1]*B[1, j] + A[i, 1]*B[1, j])
Ctmp = convert(promote_type(R, typeof(z2)), z2)
for k = 1:nA
Ctmp += A[i, k]*B[k, j]
end
C[i,j] = Ctmp
end
elseif tB == 'T'
for i = 1:mA, j = 1:nB
z2 = zero(A[i, 1]*B[j, 1] + A[i, 1]*B[j, 1])
Ctmp = convert(promote_type(R, typeof(z2)), z2)
for k = 1:nA
Ctmp += A[i, k]*B[j, k].'
end
C[i,j] = Ctmp
end
else
for i = 1:mA, j = 1:nB
z2 = zero(A[i, 1]*B[j, 1] + A[i, 1]*B[j, 1])
Ctmp = convert(promote_type(R, typeof(z2)), z2)
for k = 1:nA
Ctmp += A[i, k]*B[j, k]'
end
C[i,j] = Ctmp
end
end
elseif tA == 'T'
if tB == 'N'
for i = 1:mA, j = 1:nB
z2 = zero(A[1, i]*B[1, j] + A[1, i]*B[1, j])
Ctmp = convert(promote_type(R, typeof(z2)), z2)
for k = 1:nA
Ctmp += A[k, i].'B[k, j]
end
C[i,j] = Ctmp
end
elseif tB == 'T'
for i = 1:mA, j = 1:nB
z2 = zero(A[1, i]*B[j, 1] + A[1, i]*B[j, 1])
Ctmp = convert(promote_type(R, typeof(z2)), z2)
for k = 1:nA
Ctmp += A[k, i].'B[j, k].'
end
C[i,j] = Ctmp
end
else
for i = 1:mA, j = 1:nB
z2 = zero(A[1, i]*B[j, 1] + A[1, i]*B[j, 1])
Ctmp = convert(promote_type(R, typeof(z2)), z2)
for k = 1:nA
Ctmp += A[k, i].'B[j, k]'
end
C[i,j] = Ctmp
end
end
else
if tB == 'N'
for i = 1:mA, j = 1:nB
z2 = zero(A[1, i]*B[1, j] + A[1, i]*B[1, j])
Ctmp = convert(promote_type(R, typeof(z2)), z2)
for k = 1:nA
Ctmp += A[k, i]'B[k, j]
end
C[i,j] = Ctmp
end
elseif tB == 'T'
for i = 1:mA, j = 1:nB
z2 = zero(A[1, i]*B[j, 1] + A[1, i]*B[j, 1])
Ctmp = convert(promote_type(R, typeof(z2)), z2)
for k = 1:nA
Ctmp += A[k, i]'B[j, k].'
end
C[i,j] = Ctmp
end
else
for i = 1:mA, j = 1:nB
z2 = zero(A[1, i]*B[j, 1] + A[1, i]*B[j, 1])
Ctmp = convert(promote_type(R, typeof(z2)), z2)
for k = 1:nA
Ctmp += A[k, i]'B[j, k]'
end
C[i,j] = Ctmp
end
end
end
end
end # @inbounds
C
end
# multiply 2x2 matrices
function matmul2x2(tA, tB, A::AbstractMatrix{T}, B::AbstractMatrix{S}) where {T,S}
matmul2x2!(similar(B, promote_op(matprod, T, S), 2, 2), tA, tB, A, B)
end
function matmul2x2!(C::AbstractMatrix, tA, tB, A::AbstractMatrix, B::AbstractMatrix)
if !(size(A) == size(B) == size(C) == (2,2))
throw(DimensionMismatch("A has size $(size(A)), B has size $(size(B)), C has size $(size(C))"))
end
@inbounds begin
if tA == 'T'
A11 = transpose(A[1,1]); A12 = transpose(A[2,1]); A21 = transpose(A[1,2]); A22 = transpose(A[2,2])
elseif tA == 'C'
A11 = adjoint(A[1,1]); A12 = adjoint(A[2,1]); A21 = adjoint(A[1,2]); A22 = adjoint(A[2,2])
else
A11 = A[1,1]; A12 = A[1,2]; A21 = A[2,1]; A22 = A[2,2]
end
if tB == 'T'
B11 = transpose(B[1,1]); B12 = transpose(B[2,1]); B21 = transpose(B[1,2]); B22 = transpose(B[2,2])
elseif tB == 'C'
B11 = adjoint(B[1,1]); B12 = adjoint(B[2,1]); B21 = adjoint(B[1,2]); B22 = adjoint(B[2,2])
else
B11 = B[1,1]; B12 = B[1,2]; B21 = B[2,1]; B22 = B[2,2]
end
C[1,1] = A11*B11 + A12*B21
C[1,2] = A11*B12 + A12*B22
C[2,1] = A21*B11 + A22*B21
C[2,2] = A21*B12 + A22*B22
end # inbounds
C
end
# Multiply 3x3 matrices
function matmul3x3(tA, tB, A::AbstractMatrix{T}, B::AbstractMatrix{S}) where {T,S}
matmul3x3!(similar(B, promote_op(matprod, T, S), 3, 3), tA, tB, A, B)
end
function matmul3x3!(C::AbstractMatrix, tA, tB, A::AbstractMatrix, B::AbstractMatrix)
if !(size(A) == size(B) == size(C) == (3,3))
throw(DimensionMismatch("A has size $(size(A)), B has size $(size(B)), C has size $(size(C))"))
end
@inbounds begin
if tA == 'T'
A11 = transpose(A[1,1]); A12 = transpose(A[2,1]); A13 = transpose(A[3,1])
A21 = transpose(A[1,2]); A22 = transpose(A[2,2]); A23 = transpose(A[3,2])
A31 = transpose(A[1,3]); A32 = transpose(A[2,3]); A33 = transpose(A[3,3])
elseif tA == 'C'
A11 = adjoint(A[1,1]); A12 = adjoint(A[2,1]); A13 = adjoint(A[3,1])
A21 = adjoint(A[1,2]); A22 = adjoint(A[2,2]); A23 = adjoint(A[3,2])
A31 = adjoint(A[1,3]); A32 = adjoint(A[2,3]); A33 = adjoint(A[3,3])
else
A11 = A[1,1]; A12 = A[1,2]; A13 = A[1,3]
A21 = A[2,1]; A22 = A[2,2]; A23 = A[2,3]
A31 = A[3,1]; A32 = A[3,2]; A33 = A[3,3]
end
if tB == 'T'
B11 = transpose(B[1,1]); B12 = transpose(B[2,1]); B13 = transpose(B[3,1])
B21 = transpose(B[1,2]); B22 = transpose(B[2,2]); B23 = transpose(B[3,2])
B31 = transpose(B[1,3]); B32 = transpose(B[2,3]); B33 = transpose(B[3,3])
elseif tB == 'C'
B11 = adjoint(B[1,1]); B12 = adjoint(B[2,1]); B13 = adjoint(B[3,1])
B21 = adjoint(B[1,2]); B22 = adjoint(B[2,2]); B23 = adjoint(B[3,2])
B31 = adjoint(B[1,3]); B32 = adjoint(B[2,3]); B33 = adjoint(B[3,3])
else
B11 = B[1,1]; B12 = B[1,2]; B13 = B[1,3]
B21 = B[2,1]; B22 = B[2,2]; B23 = B[2,3]
B31 = B[3,1]; B32 = B[3,2]; B33 = B[3,3]
end
C[1,1] = A11*B11 + A12*B21 + A13*B31
C[1,2] = A11*B12 + A12*B22 + A13*B32
C[1,3] = A11*B13 + A12*B23 + A13*B33
C[2,1] = A21*B11 + A22*B21 + A23*B31
C[2,2] = A21*B12 + A22*B22 + A23*B32
C[2,3] = A21*B13 + A22*B23 + A23*B33
C[3,1] = A31*B11 + A32*B21 + A33*B31
C[3,2] = A31*B12 + A32*B22 + A33*B32
C[3,3] = A31*B13 + A32*B23 + A33*B33
end # inbounds
C
end