-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathlinalg.jl
1136 lines (1030 loc) · 35.8 KB
/
linalg.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
import LinearAlgebra: checksquare
## sparse matrix multiplication
*(A::SparseMatrixCSC{TvA,TiA}, B::SparseMatrixCSC{TvB,TiB}) where {TvA,TiA,TvB,TiB} =
*(sppromote(A, B)...)
*(A::SparseMatrixCSC{TvA,TiA}, transB::Transpose{<:Any,<:SparseMatrixCSC{TvB,TiB}}) where {TvA,TiA,TvB,TiB} =
(B = transB.parent; (pA, pB) = sppromote(A, B); *(pA, transpose(pB)))
*(A::SparseMatrixCSC{TvA,TiA}, adjB::Adjoint{<:Any,<:SparseMatrixCSC{TvB,TiB}}) where {TvA,TiA,TvB,TiB} =
(B = adjB.parent; (pA, pB) = sppromote(A, B); *(pA, adjoint(pB)))
*(transA::Transpose{<:Any,<:SparseMatrixCSC{TvA,TiA}}, B::SparseMatrixCSC{TvB,TiB}) where {TvA,TiA,TvB,TiB} =
(A = transA.parent; (pA, pB) = sppromote(A, B); *(transpose(pA), pB))
*(adjA::Adjoint{<:Any,<:SparseMatrixCSC{TvA,TiA}}, B::SparseMatrixCSC{TvB,TiB}) where {TvA,TiA,TvB,TiB} =
(A = adjA.parent; (pA, pB) = sppromote(A, B); *(adjoint(pA), pB))
*(transA::Transpose{<:Any,<:SparseMatrixCSC{TvA,TiA}}, transB::Transpose{<:Any,<:SparseMatrixCSC{TvB,TiB}}) where {TvA,TiA,TvB,TiB} =
(A = transA.parent; B = transB.parent; (pA, pB) = sppromote(A, B); *(transpose(pA), transpose(pB)))
*(adjA::Adjoint{<:Any,<:SparseMatrixCSC{TvA,TiA}}, adjB::Adjoint{<:Any,<:SparseMatrixCSC{TvB,TiB}}) where {TvA,TiA,TvB,TiB} =
(A = adjA.parent; B = adjB.parent; (pA, pB) = sppromote(A, B); *(adjoint(pA), adjoint(pB)))
function sppromote(A::SparseMatrixCSC{TvA,TiA}, B::SparseMatrixCSC{TvB,TiB}) where {TvA,TiA,TvB,TiB}
Tv = promote_type(TvA, TvB)
Ti = promote_type(TiA, TiB)
A = convert(SparseMatrixCSC{Tv,Ti}, A)
B = convert(SparseMatrixCSC{Tv,Ti}, B)
A, B
end
# In matrix-vector multiplication, the correct orientation of the vector is assumed.
function mul!(C::StridedVecOrMat, A::SparseMatrixCSC, B::StridedVecOrMat, α::Number, β::Number)
A.n == size(B, 1) || throw(DimensionMismatch())
A.m == size(C, 1) || throw(DimensionMismatch())
size(B, 2) == size(C, 2) || throw(DimensionMismatch())
nzv = A.nzval
rv = A.rowval
if β != 1
β != 0 ? rmul!(C, β) : fill!(C, zero(eltype(C)))
end
for k = 1:size(C, 2)
@inbounds for col = 1:A.n
αxj = α*B[col,k]
for j = A.colptr[col]:(A.colptr[col + 1] - 1)
C[rv[j], k] += nzv[j]*αxj
end
end
end
C
end
*(A::SparseMatrixCSC{TA,S}, x::StridedVector{Tx}) where {TA,S,Tx} =
(T = promote_type(TA, Tx); mul!(similar(x, T, A.m), A, x, one(T), zero(T)))
*(A::SparseMatrixCSC{TA,S}, B::StridedMatrix{Tx}) where {TA,S,Tx} =
(T = promote_type(TA, Tx); mul!(similar(B, T, (A.m, size(B, 2))), A, B, one(T), zero(T)))
function mul!(C::StridedVecOrMat, adjA::Adjoint{<:Any,<:SparseMatrixCSC}, B::StridedVecOrMat, α::Number, β::Number)
A = adjA.parent
A.n == size(C, 1) || throw(DimensionMismatch())
A.m == size(B, 1) || throw(DimensionMismatch())
size(B, 2) == size(C, 2) || throw(DimensionMismatch())
nzv = A.nzval
rv = A.rowval
if β != 1
β != 0 ? rmul!(C, β) : fill!(C, zero(eltype(C)))
end
for k = 1:size(C, 2)
@inbounds for col = 1:A.n
tmp = zero(eltype(C))
for j = A.colptr[col]:(A.colptr[col + 1] - 1)
tmp += adjoint(nzv[j])*B[rv[j],k]
end
C[col,k] += α*tmp
end
end
C
end
*(adjA::Adjoint{<:Any,<:SparseMatrixCSC{TA,S}}, x::StridedVector{Tx}) where {TA,S,Tx} =
(A = adjA.parent; T = promote_type(TA, Tx); mul!(similar(x, T, A.n), adjoint(A), x, one(T), zero(T)))
*(adjA::Adjoint{<:Any,<:SparseMatrixCSC{TA,S}}, B::StridedMatrix{Tx}) where {TA,S,Tx} =
(A = adjA.parent; T = promote_type(TA, Tx); mul!(similar(B, T, (A.n, size(B, 2))), adjoint(A), B, one(T), zero(T)))
function mul!(C::StridedVecOrMat, transA::Transpose{<:Any,<:SparseMatrixCSC}, B::StridedVecOrMat, α::Number, β::Number)
A = transA.parent
A.n == size(C, 1) || throw(DimensionMismatch())
A.m == size(B, 1) || throw(DimensionMismatch())
size(B, 2) == size(C, 2) || throw(DimensionMismatch())
nzv = A.nzval
rv = A.rowval
if β != 1
β != 0 ? rmul!(C, β) : fill!(C, zero(eltype(C)))
end
for k = 1:size(C, 2)
@inbounds for col = 1:A.n
tmp = zero(eltype(C))
for j = A.colptr[col]:(A.colptr[col + 1] - 1)
tmp += transpose(nzv[j])*B[rv[j],k]
end
C[col,k] += α*tmp
end
end
C
end
*(transA::Transpose{<:Any,<:SparseMatrixCSC{TA,S}}, x::StridedVector{Tx}) where {TA,S,Tx} =
(A = transA.parent; T = promote_type(TA, Tx); mul!(similar(x, T, A.n), transpose(A), x, one(T), zero(T)))
*(transA::Transpose{<:Any,<:SparseMatrixCSC{TA,S}}, B::StridedMatrix{Tx}) where {TA,S,Tx} =
(A = transA.parent; T = promote_type(TA, Tx); mul!(similar(B, T, (A.n, size(B, 2))), transpose(A), B, one(T), zero(T)))
# For compatibility with dense multiplication API. Should be deleted when dense multiplication
# API is updated to follow BLAS API.
mul!(C::StridedVecOrMat, A::SparseMatrixCSC, B::StridedVecOrMat) =
mul!(C, A, B, one(eltype(B)), zero(eltype(C)))
mul!(C::StridedVecOrMat, adjA::Adjoint{<:Any,<:SparseMatrixCSC}, B::StridedVecOrMat) =
(A = adjA.parent; mul!(C, adjoint(A), B, one(eltype(B)), zero(eltype(C))))
mul!(C::StridedVecOrMat, transA::Transpose{<:Any,<:SparseMatrixCSC}, B::StridedVecOrMat) =
(A = transA.parent; mul!(C, transpose(A), B, one(eltype(B)), zero(eltype(C))))
function (*)(X::StridedMatrix{TX}, A::SparseMatrixCSC{TvA,TiA}) where {TX,TvA,TiA}
mX, nX = size(X)
nX == A.m || throw(DimensionMismatch())
Y = zeros(promote_type(TX,TvA), mX, A.n)
rowval = A.rowval
nzval = A.nzval
@inbounds for multivec_row=1:mX, col = 1:A.n, k=A.colptr[col]:(A.colptr[col+1]-1)
Y[multivec_row, col] += X[multivec_row, rowval[k]] * nzval[k]
end
Y
end
function (*)(D::Diagonal, A::SparseMatrixCSC)
T = Base.promote_op(*, eltype(D), eltype(A))
mul!(LinearAlgebra.copy_oftype(A, T), D, A)
end
function (*)(A::SparseMatrixCSC, D::Diagonal)
T = Base.promote_op(*, eltype(D), eltype(A))
mul!(LinearAlgebra.copy_oftype(A, T), A, D)
end
# Sparse matrix multiplication as described in [Gustavson, 1978]:
# http://dl.acm.org/citation.cfm?id=355796
*(A::SparseMatrixCSC{Tv,Ti}, B::SparseMatrixCSC{Tv,Ti}) where {Tv,Ti} = spmatmul(A,B)
*(A::SparseMatrixCSC{Tv,Ti}, B::Adjoint{<:Any,<:SparseMatrixCSC{Tv,Ti}}) where {Tv,Ti} = spmatmul(A, copy(B))
*(A::SparseMatrixCSC{Tv,Ti}, B::Transpose{<:Any,<:SparseMatrixCSC{Tv,Ti}}) where {Tv,Ti} = spmatmul(A, copy(B))
*(A::Transpose{<:Any,<:SparseMatrixCSC{Tv,Ti}}, B::SparseMatrixCSC{Tv,Ti}) where {Tv,Ti} = spmatmul(copy(A), B)
*(A::Adjoint{<:Any,<:SparseMatrixCSC{Tv,Ti}}, B::SparseMatrixCSC{Tv,Ti}) where {Tv,Ti} = spmatmul(copy(A), B)
*(A::Adjoint{<:Any,<:SparseMatrixCSC{Tv,Ti}}, B::Adjoint{<:Any,<:SparseMatrixCSC{Tv,Ti}}) where {Tv,Ti} = spmatmul(copy(A), copy(B))
*(A::Transpose{<:Any,<:SparseMatrixCSC{Tv,Ti}}, B::Transpose{<:Any,<:SparseMatrixCSC{Tv,Ti}}) where {Tv,Ti} = spmatmul(copy(A), copy(B))
function spmatmul(A::SparseMatrixCSC{Tv,Ti}, B::SparseMatrixCSC{Tv,Ti};
sortindices::Symbol = :sortcols) where {Tv,Ti}
mA, nA = size(A)
mB, nB = size(B)
nA==mB || throw(DimensionMismatch())
colptrA = A.colptr; rowvalA = A.rowval; nzvalA = A.nzval
colptrB = B.colptr; rowvalB = B.rowval; nzvalB = B.nzval
# TODO: Need better estimation of result space
nnzC = min(mA*nB, length(nzvalA) + length(nzvalB))
colptrC = Vector{Ti}(undef, nB+1)
rowvalC = Vector{Ti}(undef, nnzC)
nzvalC = Vector{Tv}(undef, nnzC)
@inbounds begin
ip = 1
xb = zeros(Ti, mA)
x = zeros(Tv, mA)
for i in 1:nB
if ip + mA - 1 > nnzC
resize!(rowvalC, nnzC + max(nnzC,mA))
resize!(nzvalC, nnzC + max(nnzC,mA))
nnzC = length(nzvalC)
end
colptrC[i] = ip
for jp in colptrB[i]:(colptrB[i+1] - 1)
nzB = nzvalB[jp]
j = rowvalB[jp]
for kp in colptrA[j]:(colptrA[j+1] - 1)
nzC = nzvalA[kp] * nzB
k = rowvalA[kp]
if xb[k] != i
rowvalC[ip] = k
ip += 1
xb[k] = i
x[k] = nzC
else
x[k] += nzC
end
end
end
for vp in colptrC[i]:(ip - 1)
nzvalC[vp] = x[rowvalC[vp]]
end
end
colptrC[nB+1] = ip
end
deleteat!(rowvalC, colptrC[end]:length(rowvalC))
deleteat!(nzvalC, colptrC[end]:length(nzvalC))
# The Gustavson algorithm does not guarantee the product to have sorted row indices.
Cunsorted = SparseMatrixCSC(mA, nB, colptrC, rowvalC, nzvalC)
C = SparseArrays.sortSparseMatrixCSC!(Cunsorted, sortindices=sortindices)
return C
end
# Frobenius dot/inner product: trace(A'B)
function dot(A::SparseMatrixCSC{T1,S1},B::SparseMatrixCSC{T2,S2}) where {T1,T2,S1,S2}
m, n = size(A)
size(B) == (m,n) || throw(DimensionMismatch("matrices must have the same dimensions"))
r = dot(zero(T1), zero(T2))
@inbounds for j = 1:n
ia = A.colptr[j]; ia_nxt = A.colptr[j+1]
ib = B.colptr[j]; ib_nxt = B.colptr[j+1]
if ia < ia_nxt && ib < ib_nxt
ra = A.rowval[ia]; rb = B.rowval[ib]
while true
if ra < rb
ia += oneunit(S1)
ia < ia_nxt || break
ra = A.rowval[ia]
elseif ra > rb
ib += oneunit(S2)
ib < ib_nxt || break
rb = B.rowval[ib]
else # ra == rb
r += dot(A.nzval[ia], B.nzval[ib])
ia += oneunit(S1); ib += oneunit(S2)
ia < ia_nxt && ib < ib_nxt || break
ra = A.rowval[ia]; rb = B.rowval[ib]
end
end
end
end
return r
end
## solvers
function fwdTriSolve!(A::SparseMatrixCSCUnion, B::AbstractVecOrMat)
# forward substitution for CSC matrices
@assert !has_offset_axes(A, B)
nrowB, ncolB = size(B, 1), size(B, 2)
ncol = LinearAlgebra.checksquare(A)
if nrowB != ncol
throw(DimensionMismatch("A is $(ncol) columns and B has $(nrowB) rows"))
end
aa = getnzval(A)
ja = getrowval(A)
ia = getcolptr(A)
joff = 0
for k = 1:ncolB
for j = 1:nrowB
i1 = ia[j]
i2 = ia[j + 1] - 1
# loop through the structural zeros
ii = i1
jai = ja[ii]
while ii <= i2 && jai < j
ii += 1
jai = ja[ii]
end
# check for zero pivot and divide with pivot
if jai == j
bj = B[joff + jai]/aa[ii]
B[joff + jai] = bj
ii += 1
else
throw(LinearAlgebra.SingularException(j))
end
# update remaining part
for i = ii:i2
B[joff + ja[i]] -= bj*aa[i]
end
end
joff += nrowB
end
B
end
function bwdTriSolve!(A::SparseMatrixCSCUnion, B::AbstractVecOrMat)
# backward substitution for CSC matrices
@assert !has_offset_axes(A, B)
nrowB, ncolB = size(B, 1), size(B, 2)
ncol = LinearAlgebra.checksquare(A)
if nrowB != ncol
throw(DimensionMismatch("A is $(ncol) columns and B has $(nrowB) rows"))
end
aa = getnzval(A)
ja = getrowval(A)
ia = getcolptr(A)
joff = 0
for k = 1:ncolB
for j = nrowB:-1:1
i1 = ia[j]
i2 = ia[j + 1] - 1
# loop through the structural zeros
ii = i2
jai = ja[ii]
while ii >= i1 && jai > j
ii -= 1
jai = ja[ii]
end
# check for zero pivot and divide with pivot
if jai == j
bj = B[joff + jai]/aa[ii]
B[joff + jai] = bj
ii -= 1
else
throw(LinearAlgebra.SingularException(j))
end
# update remaining part
for i = ii:-1:i1
B[joff + ja[i]] -= bj*aa[i]
end
end
joff += nrowB
end
B
end
fwdTriSolve!(aA::Adjoint{<:Any,<:SparseMatrixCSCUnion}, B::AbstractVecOrMat) =
_fwdTriSolve!(aA.parent, B, true)
fwdTriSolve!(aA::Transpose{<:Any,<:SparseMatrixCSCUnion}, B::AbstractVecOrMat) =
_fwdTriSolve!(aA.parent, B, false)
function _fwdTriSolve!(A::SparseMatrixCSCUnion, B::AbstractVecOrMat, adj::Bool)
# forward substitution for adjoints of CSC matrices
@assert !has_offset_axes(A, B)
nrowB, ncolB = size(B, 1), size(B, 2)
ncol = LinearAlgebra.checksquare(A)
if nrowB != ncol
throw(DimensionMismatch("A is $(ncol) columns and B has $(nrowB) rows"))
end
aa = getnzval(A)
ja = getrowval(A)
ia = getcolptr(A)
joff = 0
for k = 1:ncolB
for j = 1:nrowB
i1 = ia[j]
i2 = ia[j + 1] - 1
akku = B[joff + j]
done = false
# loop through column j of A - only structural non-zeros
for ip = i1:i2
i = ja[ip]
aai = adj ? aa[ip]' : aa[ip]
if i < j
akku -= B[joff + i] * aai
elseif i == j
B[joff + j] = akku / aai
done = true
break
end
end
if !done
throw(LinearAlgebra.SingularException(j))
end
end
joff += nrowB
end
B
end
bwdTriSolve!(aA::Adjoint{<:Any,<:SparseMatrixCSCUnion}, B::AbstractVecOrMat) =
_bwdTriSolve!(aA.parent, B, true)
bwdTriSolve!(aA::Transpose{<:Any,<:SparseMatrixCSCUnion}, B::AbstractVecOrMat) =
_bwdTriSolve!(aA.parent, B, false)
function _bwdTriSolve!(A::SparseMatrixCSCUnion, B::AbstractVecOrMat, adj::Bool)
# forward substitution for adjoints of CSC matrices
@assert !has_offset_axes(A, B)
nrowB, ncolB = size(B, 1), size(B, 2)
ncol = LinearAlgebra.checksquare(A)
if nrowB != ncol
throw(DimensionMismatch("A is $(ncol) columns and B has $(nrowB) rows"))
end
aa = getnzval(A)
ja = getrowval(A)
ia = getcolptr(A)
joff = 0
for k = 1:ncolB
for j = nrowB:-1:1
i1 = ia[j]
i2 = ia[j + 1] - 1
akku = B[joff + j]
done = false
# loop through column j of A - only structural non-zeros
for ip = i2:-1:i1
i = ja[ip]
aai = adj ? aa[ip]' : aa[ip]
if i > j
akku -= B[joff + i] * aai
elseif i == j
B[joff + j] = akku / aai
done = true
break
end
end
if !done
throw(LinearAlgebra.SingularException(j))
end
end
joff += nrowB
end
B
end
ldiv!(L::LowerTriangular{T,<:SparseMatrixCSCUnion{T}}, B::StridedVecOrMat) where {T} = fwdTriSolve!(L.data, B)
ldiv!(L::Adjoint{T,<:UpperTriangular{T,<:SparseMatrixCSCUnion{T}}}, B::StridedVecOrMat) where {T} = _fwdTriSolve!(L.parent.data, B, true)
ldiv!(L::Transpose{T,<:UpperTriangular{T,<:SparseMatrixCSCUnion{T}}}, B::StridedVecOrMat) where {T} = _fwdTriSolve!(L.parent.data, B, false)
ldiv!(U::UpperTriangular{T,<:SparseMatrixCSCUnion{T}}, B::StridedVecOrMat) where {T} = bwdTriSolve!(U.data, B)
ldiv!(L::Adjoint{T,<:LowerTriangular{T,<:SparseMatrixCSCUnion{T}}}, B::StridedVecOrMat) where {T} = _bwdTriSolve!(L.parent.data, B, true)
ldiv!(L::Transpose{T,<:LowerTriangular{T,<:SparseMatrixCSCUnion{T}}}, B::StridedVecOrMat) where {T} = _bwdTriSolve!(L.parent.data, B, false)
(\)(L::Union{LowerTriangular{T,<:SparseMatrixCSCUnion{T}},
Adjoint{T,<:UpperTriangular{T,<:SparseMatrixCSCUnion{T}}},
Transpose{T,<:UpperTriangular{T,<:SparseMatrixCSCUnion{T}}}},
B::SparseMatrixCSC) where {T} = ldiv!(L, Array(B))
(\)(U::Union{UpperTriangular{T,<:SparseMatrixCSCUnion{T}},
Adjoint{T,<:LowerTriangular{T,<:SparseMatrixCSCUnion{T}}},
Transpose{T,<:LowerTriangular{T,<:SparseMatrixCSCUnion{T}}}},
B::SparseMatrixCSC) where {T} = ldiv!(U, Array(B))
\(A::Transpose{<:Real,<:Hermitian{<:Real,<:SparseMatrixCSC}}, B::Vector) = A.parent \ B
\(A::Transpose{<:Complex,<:Hermitian{<:Complex,<:SparseMatrixCSC}}, B::Vector) = copy(A) \ B
\(A::Transpose{<:Number,<:Symmetric{<:Number,<:SparseMatrixCSC}}, B::Vector) = A.parent \ B
function rdiv!(A::SparseMatrixCSC{T}, D::Diagonal{T}) where T
dd = D.diag
if (k = length(dd)) ≠ A.n
throw(DimensionMismatch("size(A, 2)=$(A.n) should be size(D, 1)=$k"))
end
nonz = nonzeros(A)
@inbounds for j in 1:k
ddj = dd[j]
if iszero(ddj)
throw(LinearAlgebra.SingularException(j))
end
for i in nzrange(A, j)
nonz[i] /= ddj
end
end
A
end
rdiv!(A::SparseMatrixCSC{T}, adjD::Adjoint{<:Any,<:Diagonal{T}}) where {T} =
(D = adjD.parent; rdiv!(A, conj(D)))
rdiv!(A::SparseMatrixCSC{T}, transD::Transpose{<:Any,<:Diagonal{T}}) where {T} =
(D = transD.parent; rdiv!(A, D))
## triu, tril
function triu(S::SparseMatrixCSC{Tv,Ti}, k::Integer=0) where {Tv,Ti}
m,n = size(S)
colptr = Vector{Ti}(undef, n+1)
nnz = 0
for col = 1 : min(max(k+1,1), n+1)
colptr[col] = 1
end
for col = max(k+1,1) : n
for c1 = S.colptr[col] : S.colptr[col+1]-1
S.rowval[c1] > col - k && break
nnz += 1
end
colptr[col+1] = nnz+1
end
rowval = Vector{Ti}(undef, nnz)
nzval = Vector{Tv}(undef, nnz)
A = SparseMatrixCSC(m, n, colptr, rowval, nzval)
for col = max(k+1,1) : n
c1 = S.colptr[col]
for c2 = A.colptr[col] : A.colptr[col+1]-1
A.rowval[c2] = S.rowval[c1]
A.nzval[c2] = S.nzval[c1]
c1 += 1
end
end
A
end
function tril(S::SparseMatrixCSC{Tv,Ti}, k::Integer=0) where {Tv,Ti}
m,n = size(S)
colptr = Vector{Ti}(undef, n+1)
nnz = 0
colptr[1] = 1
for col = 1 : min(n, m+k)
l1 = S.colptr[col+1]-1
for c1 = 0 : (l1 - S.colptr[col])
S.rowval[l1 - c1] < col - k && break
nnz += 1
end
colptr[col+1] = nnz+1
end
for col = max(min(n, m+k)+2,1) : n+1
colptr[col] = nnz+1
end
rowval = Vector{Ti}(undef, nnz)
nzval = Vector{Tv}(undef, nnz)
A = SparseMatrixCSC(m, n, colptr, rowval, nzval)
for col = 1 : min(n, m+k)
c1 = S.colptr[col+1]-1
l2 = A.colptr[col+1]-1
for c2 = 0 : l2 - A.colptr[col]
A.rowval[l2 - c2] = S.rowval[c1]
A.nzval[l2 - c2] = S.nzval[c1]
c1 -= 1
end
end
A
end
## diff
function sparse_diff1(S::SparseMatrixCSC{Tv,Ti}) where {Tv,Ti}
m,n = size(S)
m > 1 || return SparseMatrixCSC(0, n, fill(one(Ti),n+1), Ti[], Tv[])
colptr = Vector{Ti}(undef, n+1)
numnz = 2 * nnz(S) # upper bound; will shrink later
rowval = Vector{Ti}(undef, numnz)
nzval = Vector{Tv}(undef, numnz)
numnz = 0
colptr[1] = 1
for col = 1 : n
last_row = 0
last_val = 0
for k = S.colptr[col] : S.colptr[col+1]-1
row = S.rowval[k]
val = S.nzval[k]
if row > 1
if row == last_row + 1
nzval[numnz] += val
nzval[numnz]==zero(Tv) && (numnz -= 1)
else
numnz += 1
rowval[numnz] = row - 1
nzval[numnz] = val
end
end
if row < m
numnz += 1
rowval[numnz] = row
nzval[numnz] = -val
end
last_row = row
last_val = val
end
colptr[col+1] = numnz+1
end
deleteat!(rowval, numnz+1:length(rowval))
deleteat!(nzval, numnz+1:length(nzval))
return SparseMatrixCSC(m-1, n, colptr, rowval, nzval)
end
function sparse_diff2(a::SparseMatrixCSC{Tv,Ti}) where {Tv,Ti}
m,n = size(a)
colptr = Vector{Ti}(undef, max(n,1))
numnz = 2 * nnz(a) # upper bound; will shrink later
rowval = Vector{Ti}(undef, numnz)
nzval = Vector{Tv}(undef, numnz)
z = zero(Tv)
colptr_a = a.colptr
rowval_a = a.rowval
nzval_a = a.nzval
ptrS = 1
colptr[1] = 1
n == 0 && return SparseMatrixCSC(m, n, colptr, rowval, nzval)
startA = colptr_a[1]
stopA = colptr_a[2]
rA = startA : stopA - 1
rowvalA = rowval_a[rA]
nzvalA = nzval_a[rA]
lA = stopA - startA
for col = 1:n-1
startB, stopB = startA, stopA
startA = colptr_a[col+1]
stopA = colptr_a[col+2]
rowvalB = rowvalA
nzvalB = nzvalA
lB = lA
rA = startA : stopA - 1
rowvalA = rowval_a[rA]
nzvalA = nzval_a[rA]
lA = stopA - startA
ptrB = 1
ptrA = 1
while ptrA <= lA && ptrB <= lB
rowA = rowvalA[ptrA]
rowB = rowvalB[ptrB]
if rowA < rowB
rowval[ptrS] = rowA
nzval[ptrS] = nzvalA[ptrA]
ptrS += 1
ptrA += 1
elseif rowB < rowA
rowval[ptrS] = rowB
nzval[ptrS] = -nzvalB[ptrB]
ptrS += 1
ptrB += 1
else
res = nzvalA[ptrA] - nzvalB[ptrB]
if res != z
rowval[ptrS] = rowA
nzval[ptrS] = res
ptrS += 1
end
ptrA += 1
ptrB += 1
end
end
while ptrA <= lA
rowval[ptrS] = rowvalA[ptrA]
nzval[ptrS] = nzvalA[ptrA]
ptrS += 1
ptrA += 1
end
while ptrB <= lB
rowval[ptrS] = rowvalB[ptrB]
nzval[ptrS] = -nzvalB[ptrB]
ptrS += 1
ptrB += 1
end
colptr[col+1] = ptrS
end
deleteat!(rowval, ptrS:length(rowval))
deleteat!(nzval, ptrS:length(nzval))
return SparseMatrixCSC(m, n-1, colptr, rowval, nzval)
end
diff(a::SparseMatrixCSC; dims::Integer) = dims==1 ? sparse_diff1(a) : sparse_diff2(a)
## norm and rank
norm(A::SparseMatrixCSC, p::Real=2) = norm(view(A.nzval, 1:nnz(A)), p)
function opnorm(A::SparseMatrixCSC, p::Real=2)
m, n = size(A)
if m == 0 || n == 0 || isempty(A)
return float(real(zero(eltype(A))))
elseif m == 1 || n == 1
# TODO: compute more efficiently using A.nzval directly
return opnorm(Array(A), p)
else
Tnorm = typeof(float(real(zero(eltype(A)))))
Tsum = promote_type(Float64,Tnorm)
if p==1
nA::Tsum = 0
for j=1:n
colSum::Tsum = 0
for i = A.colptr[j]:A.colptr[j+1]-1
colSum += abs(A.nzval[i])
end
nA = max(nA, colSum)
end
return convert(Tnorm, nA)
elseif p==2
throw(ArgumentError("2-norm not yet implemented for sparse matrices. Try opnorm(Array(A)) or opnorm(A, p) where p=1 or Inf."))
elseif p==Inf
rowSum = zeros(Tsum,m)
for i=1:length(A.nzval)
rowSum[A.rowval[i]] += abs(A.nzval[i])
end
return convert(Tnorm, maximum(rowSum))
end
end
throw(ArgumentError("invalid operator p-norm p=$p. Valid: 1, Inf"))
end
# TODO rank
# cond
function cond(A::SparseMatrixCSC, p::Real=2)
if p == 1
normAinv = opnormestinv(A)
normA = opnorm(A, 1)
return normA * normAinv
elseif p == Inf
normAinv = opnormestinv(copy(A'))
normA = opnorm(A, Inf)
return normA * normAinv
elseif p == 2
throw(ArgumentError("2-norm condition number is not implemented for sparse matrices, try cond(Array(A), 2) instead"))
else
throw(ArgumentError("second argument must be either 1 or Inf, got $p"))
end
end
function opnormestinv(A::SparseMatrixCSC{T}, t::Integer = min(2,maximum(size(A)))) where T
maxiter = 5
# Check the input
n = checksquare(A)
F = factorize(A)
if t <= 0
throw(ArgumentError("number of blocks must be a positive integer"))
end
if t > n
throw(ArgumentError("number of blocks must not be greater than $n"))
end
ind = Vector{Int64}(undef, n)
ind_hist = Vector{Int64}(undef, maxiter * t)
Ti = typeof(float(zero(T)))
S = zeros(T <: Real ? Int : Ti, n, t)
function _rand_pm1!(v)
for i in eachindex(v)
v[i] = rand()<0.5 ? 1 : -1
end
end
function _any_abs_eq(v,n::Int)
for vv in v
if abs(vv)==n
return true
end
end
return false
end
# Generate the block matrix
X = Matrix{Ti}(undef, n, t)
X[1:n,1] .= 1
for j = 2:t
while true
_rand_pm1!(view(X,1:n,j))
yaux = X[1:n,j]' * X[1:n,1:j-1]
if !_any_abs_eq(yaux,n)
break
end
end
end
rmul!(X, inv(n))
iter = 0
local est
local est_old
est_ind = 0
while iter < maxiter
iter += 1
Y = F \ X
est = zero(real(eltype(Y)))
est_ind = 0
for i = 1:t
y = norm(Y[1:n,i], 1)
if y > est
est = y
est_ind = i
end
end
if iter == 1
est_old = est
end
if est > est_old || iter == 2
ind_best = est_ind
end
if iter >= 2 && est <= est_old
est = est_old
break
end
est_old = est
S_old = copy(S)
for j = 1:t
for i = 1:n
S[i,j] = Y[i,j]==0 ? one(Y[i,j]) : sign(Y[i,j])
end
end
if T <: Real
# Check whether cols of S are parallel to cols of S or S_old
for j = 1:t
while true
repeated = false
if j > 1
saux = S[1:n,j]' * S[1:n,1:j-1]
if _any_abs_eq(saux,n)
repeated = true
end
end
if !repeated
saux2 = S[1:n,j]' * S_old[1:n,1:t]
if _any_abs_eq(saux2,n)
repeated = true
end
end
if repeated
_rand_pm1!(view(S,1:n,j))
else
break
end
end
end
end
# Use the conjugate transpose
Z = F' \ S
h_max = zero(real(eltype(Z)))
h = zeros(real(eltype(Z)), n)
h_ind = 0
for i = 1:n
h[i] = norm(Z[i,1:t], Inf)
if h[i] > h_max
h_max = h[i]
h_ind = i
end
ind[i] = i
end
if iter >=2 && ind_best == h_ind
break
end
p = sortperm(h, rev=true)
h = h[p]
permute!(ind, p)
if t > 1
addcounter = t
elemcounter = 0
while addcounter > 0 && elemcounter < n
elemcounter = elemcounter + 1
current_element = ind[elemcounter]
found = false
for i = 1:t * (iter - 1)
if current_element == ind_hist[i]
found = true
break
end
end
if !found
addcounter = addcounter - 1
for i = 1:current_element - 1
X[i,t-addcounter] = 0
end
X[current_element,t-addcounter] = 1
for i = current_element + 1:n
X[i,t-addcounter] = 0
end
ind_hist[iter * t - addcounter] = current_element
else
if elemcounter == t && addcounter == t
break
end
end
end
else
ind_hist[1:t] = ind[1:t]
for j = 1:t
for i = 1:ind[j] - 1
X[i,j] = 0
end
X[ind[j],j] = 1
for i = ind[j] + 1:n
X[i,j] = 0
end
end
end
end
return est
end
## kron
# sparse matrix ⊗ sparse matrix
function kron(A::SparseMatrixCSC{T1,S1}, B::SparseMatrixCSC{T2,S2}) where {T1,S1,T2,S2}
nnzC = nnz(A)*nnz(B)
mA, nA = size(A); mB, nB = size(B)
mC, nC = mA*mB, nA*nB
colptrC = Vector{promote_type(S1,S2)}(undef, nC+1)
rowvalC = Vector{promote_type(S1,S2)}(undef, nnzC)
nzvalC = Vector{typeof(one(T1)*one(T2))}(undef, nnzC)
colptrC[1] = 1
col = 1
@inbounds for j = 1:nA
startA = A.colptr[j]
stopA = A.colptr[j+1] - 1
lA = stopA - startA + 1
for i = 1:nB
startB = B.colptr[i]
stopB = B.colptr[i+1] - 1
lB = stopB - startB + 1
ptr_range = (1:lB) .+ (colptrC[col]-1)
colptrC[col+1] = colptrC[col] + lA*lB
col += 1
for ptrA = startA : stopA
ptrB = startB
for ptr = ptr_range
rowvalC[ptr] = (A.rowval[ptrA]-1)*mB + B.rowval[ptrB]
nzvalC[ptr] = A.nzval[ptrA] * B.nzval[ptrB]
ptrB += 1
end
ptr_range = ptr_range .+ lB
end
end
end
return SparseMatrixCSC(mC, nC, colptrC, rowvalC, nzvalC)
end
# sparse vector ⊗ sparse vector
function kron(x::SparseVector{T1,S1}, y::SparseVector{T2,S2}) where {T1,S1,T2,S2}
nnzx = nnz(x); nnzy = nnz(y)
nnzz = nnzx*nnzy # number of nonzeros in new vector
nzind = Vector{promote_type(S1,S2)}(undef, nnzz) # the indices of nonzeros
nzval = Vector{typeof(one(T1)*one(T2))}(undef, nnzz) # the values of nonzeros
@inbounds for i = 1:nnzx, j = 1:nnzy
this_ind = (i-1)*nnzy+j
nzind[this_ind] = (x.nzind[i]-1)*y.n + y.nzind[j]
nzval[this_ind] = x.nzval[i] * y.nzval[j]
end
return SparseVector(x.n*y.n, nzind, nzval)
end
# sparse matrix ⊗ sparse vector & vice versa
kron(A::SparseMatrixCSC, x::SparseVector) = kron(A, SparseMatrixCSC(x))
kron(x::SparseVector, A::SparseMatrixCSC) = kron(SparseMatrixCSC(x), A)
# sparse vec/mat ⊗ vec/mat and vice versa
kron(A::Union{SparseVector,SparseMatrixCSC}, B::VecOrMat) = kron(A, sparse(B))
kron(A::VecOrMat, B::Union{SparseVector,SparseMatrixCSC}) = kron(sparse(A), B)
## det, inv, cond
inv(A::SparseMatrixCSC) = error("The inverse of a sparse matrix can often be dense and can cause the computer to run out of memory. If you are sure you have enough memory, please convert your matrix to a dense matrix.")
# TODO
## scale methods
# Copy colptr and rowval from one sparse matrix to another
function copyinds!(C::SparseMatrixCSC, A::SparseMatrixCSC)
if C.colptr !== A.colptr
resize!(C.colptr, length(A.colptr))
copyto!(C.colptr, A.colptr)
end
if C.rowval !== A.rowval
resize!(C.rowval, length(A.rowval))
copyto!(C.rowval, A.rowval)
end
end
# multiply by diagonal matrix as vector
function mul!(C::SparseMatrixCSC, A::SparseMatrixCSC, D::Diagonal{T, <:Vector}) where T
m, n = size(A)
b = D.diag
(n==length(b) && size(A)==size(C)) || throw(DimensionMismatch())
copyinds!(C, A)
Cnzval = C.nzval
Anzval = A.nzval
resize!(Cnzval, length(Anzval))
for col = 1:n, p = A.colptr[col]:(A.colptr[col+1]-1)
@inbounds Cnzval[p] = Anzval[p] * b[col]
end
C
end
function mul!(C::SparseMatrixCSC, D::Diagonal{T, <:Vector}, A::SparseMatrixCSC) where T
m, n = size(A)
b = D.diag
(m==length(b) && size(A)==size(C)) || throw(DimensionMismatch())
copyinds!(C, A)
Cnzval = C.nzval
Anzval = A.nzval
Arowval = A.rowval
resize!(Cnzval, length(Anzval))
for col = 1:n, p = A.colptr[col]:(A.colptr[col+1]-1)
@inbounds Cnzval[p] = Anzval[p] * b[Arowval[p]]
end
C
end
function mul!(C::SparseMatrixCSC, A::SparseMatrixCSC, b::Number)