-
Notifications
You must be signed in to change notification settings - Fork 224
/
Copy pathinterior.jl
919 lines (809 loc) · 35.8 KB
/
interior.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
# TODO: when Optim supports sparse arrays, make a SparseMatrixCSC version of jacobianx
abstract type AbstractBarrierState end
# These are used not only for the current state, but also for the step and the gradient
struct BarrierStateVars{T}
slack_x::Vector{T} # values of slack variables for x
slack_c::Vector{T} # values of slack variables for c
λx::Vector{T} # λ for equality constraints on slack_x
λc::Vector{T} # λ for equality constraints on slack_c
λxE::Vector{T} # λ for equality constraints on x
λcE::Vector{T} # λ for linear/nonlinear equality constraints
end
# Note on λxE:
# We could just set equality-constrained variables to their
# constraint values at the beginning of optimization, but this
# might make the initial guess infeasible in terms of its
# inequality constraints. This would be a much bigger problem than
# not matching the equality constraints. So we allow them to
# differ, and require that the algorithm can cope with it.
function BarrierStateVars{T}(bounds::ConstraintBounds) where T
slack_x = Array{T}(undef, length(bounds.ineqx))
slack_c = Array{T}(undef, length(bounds.ineqc))
λx = similar(slack_x)
λc = similar(slack_c)
λxE = Array{T}(undef, length(bounds.eqx))
λcE = Array{T}(undef, length(bounds.eqc))
sv = BarrierStateVars{T}(slack_x, slack_c, λx, λc, λxE, λcE)
end
BarrierStateVars(bounds::ConstraintBounds{T}) where T = BarrierStateVars{T}(bounds)
function BarrierStateVars(bounds::ConstraintBounds{T}, x) where T
sv = BarrierStateVars(bounds)
setslack!(sv.slack_x, x, bounds.ineqx, bounds.σx, bounds.bx)
sv
end
function BarrierStateVars(bounds::ConstraintBounds{T}, x, c) where T
sv = BarrierStateVars(bounds)
setslack!(sv.slack_x, x, bounds.ineqx, bounds.σx, bounds.bx)
setslack!(sv.slack_c, c, bounds.ineqc, bounds.σc, bounds.bc)
sv
end
function setslack!(slack, v, ineq, σ, b)
for i = 1:length(ineq)
dv = v[ineq[i]]-b[i]
slack[i] = abs(σ[i]*dv)
end
slack
end
slack(bstate::BarrierStateVars) = [bstate.slack_x; bstate.slack_c]
lambdaI(bstate::BarrierStateVars) = [bstate.λx; bstate.λc]
lambdaE(bstate::BarrierStateVars) = [bstate.λxE; bstate.λcE] # TODO: Not used by IPNewton?
lambdaI(state::AbstractBarrierState) = lambdaI(state.bstate)
lambdaE(state::AbstractBarrierState) = lambdaE(state.bstate) # TODO: Not used by IPNewton?
Base.similar(bstate::BarrierStateVars) =
BarrierStateVars(similar(bstate.slack_x),
similar(bstate.slack_c),
similar(bstate.λx),
similar(bstate.λc),
similar(bstate.λxE),
similar(bstate.λcE))
Base.copy(bstate::BarrierStateVars) =
BarrierStateVars(copy(bstate.slack_x),
copy(bstate.slack_c),
copy(bstate.λx),
copy(bstate.λc),
copy(bstate.λxE),
copy(bstate.λcE))
function Base.fill!(b::BarrierStateVars, val)
fill!(b.slack_x, val)
fill!(b.slack_c, val)
fill!(b.λx, val)
fill!(b.λc, val)
fill!(b.λxE, val)
fill!(b.λcE, val)
b
end
Base.convert(::Type{BarrierStateVars{T}}, bstate::BarrierStateVars) where T =
BarrierStateVars(convert(Array{T}, bstate.slack_x),
convert(Array{T}, bstate.slack_c),
convert(Array{T}, bstate.λx),
convert(Array{T}, bstate.λc),
convert(Array{T}, bstate.λxE),
convert(Array{T}, bstate.λcE))
Base.isempty(bstate::BarrierStateVars) = isempty(bstate.slack_x) &
isempty(bstate.slack_c) & isempty(bstate.λxE) & isempty(bstate.λcE)
Base.eltype(::Type{BarrierStateVars{T}}) where T = T
Base.eltype(sv::BarrierStateVars) = eltype(typeof(sv))
function Base.show(io::IO, b::BarrierStateVars)
print(io, "BarrierStateVars{$(eltype(b))}:")
for fn in (:slack_x, :slack_c, :λx, :λc, :λxE, :λcE)
print(io, "\n $fn: ")
show(io, getfield(b, fn))
end
end
Base.:(==)(v::BarrierStateVars, w::BarrierStateVars) =
v.slack_x == w.slack_x &&
v.slack_c == w.slack_c &&
v.λx == w.λx &&
v.λc == w.λc &&
v.λxE == w.λxE &&
v.λcE == w.λcE
const bsv_seed = sizeof(UInt) == 64 ? 0x145b788192d1cde3 : 0x766a2810
Base.hash(b::BarrierStateVars, u::UInt) =
hash(b.λcE, hash(b.λxE, hash(b.λc, hash(b.λx, hash(b.slack_c, hash(b.slack_x, u+bsv_seed))))))
function dot(v::BarrierStateVars, w::BarrierStateVars)
dot(v.slack_x,w.slack_x) +
dot(v.slack_c, w.slack_c) +
dot(v.λx, w.λx) +
dot(v.λc, w.λc) +
dot(v.λxE, w.λxE) +
dot(v.λcE, w.λcE)
end
function norm(b::BarrierStateVars, p::Real)
norm(b.slack_x, p) + norm(b.slack_c, p) +
norm(b.λx, p) + norm(b.λc, p) +
norm(b.λxE, p) + norm(b.λcE, p)
end
"""
BarrierLineSearch{T}
Parameters for interior-point line search methods that use only the value
"""
struct BarrierLineSearch{T}
c::Vector{T} # value of constraints-functions at trial point
bstate::BarrierStateVars{T} # trial point for slack and λ variables
end
Base.convert(::Type{BarrierLineSearch{T}}, bsl::BarrierLineSearch) where T =
BarrierLineSearch(convert(Vector{T}, bsl.c),
convert(BarrierStateVars{T}, bsl.bstate))
"""
BarrierLineSearchGrad{T}
Parameters for interior-point line search methods that exploit the slope.
"""
struct BarrierLineSearchGrad{T}
c::Vector{T} # value of constraints-functions at trial point
J::Matrix{T} # constraints-Jacobian at trial point
bstate::BarrierStateVars{T} # trial point for slack and λ variables
bgrad::BarrierStateVars{T} # trial point's gradient
end
Base.convert(::Type{BarrierLineSearchGrad{T}}, bsl::BarrierLineSearchGrad) where T =
BarrierLineSearchGrad(convert(Vector{T}, bsl.c),
convert(Matrix{T}, bsl.J),
convert(BarrierStateVars{T}, bsl.bstate),
convert(BarrierStateVars{T}, bsl.bgrad))
function ls_update!(out::BarrierStateVars, base::BarrierStateVars, step::BarrierStateVars, αs::NTuple{4,Number})
ls_update!(out.slack_x, base.slack_x, step.slack_x, αs[2])
ls_update!(out.slack_c, base.slack_c, step.slack_c, αs[2])
ls_update!(out.λx, base.λx, step.λx, αs[3])
ls_update!(out.λc, base.λc, step.λc, αs[3])
ls_update!(out.λxE, base.λxE, step.λxE, αs[4])
ls_update!(out.λcE, base.λcE, step.λcE, αs[4])
out
end
ls_update!(out::BarrierStateVars, base::BarrierStateVars, step::BarrierStateVars, αs::Tuple{Number,Number}) =
ls_update!(out, base, step, (αs[1],αs[1],αs[2],αs[1]))
ls_update!(out::BarrierStateVars, base::BarrierStateVars, step::BarrierStateVars, α::Number) =
ls_update!(out, base, step, (α,α,α,α))
ls_update!(out::BarrierStateVars, base::BarrierStateVars, step::BarrierStateVars, αs::AbstractVector) =
ls_update!(out, base, step, αs[1]) # (αs...,))
function initial_convergence(d, state, method::ConstrainedOptimizer, initial_x, options)
# TODO: Make sure state.bgrad has been evaluated at initial_x
# state.bgrad normally comes from constraints.c!(..., initial_x) in initial_state
gradient!(d, initial_x)
stopped = !isfinite(value(d)) || any(!isfinite, gradient(d))
norm(gradient(d), Inf) + norm(state.bgrad, Inf) < options.g_abstol, stopped
end
function optimize(f, g, lower::AbstractArray, upper::AbstractArray, initial_x::AbstractArray, method::ConstrainedOptimizer=IPNewton(),
options::Options = Options(;default_options(method)...))
d = TwiceDifferentiable(f, g, initial_x)
optimize(d, lower, upper, initial_x, method, options)
end
function optimize(f, g, h, lower::AbstractArray, upper::AbstractArray, initial_x::AbstractArray, method::ConstrainedOptimizer=IPNewton(),
options::Options = Options(;default_options(method)...))
d = TwiceDifferentiable(f, g, h, initial_x)
optimize(d, lower, upper, initial_x, method, options)
end
function optimize(d::TwiceDifferentiable, lower::AbstractArray, upper::AbstractArray, initial_x::AbstractArray,
options::Options = Options(;default_options(IPNewton())...))
optimize(d, lower, upper, initial_x, IPNewton(), options)
end
function optimize(d, lower::AbstractArray, upper::AbstractArray, initial_x::AbstractArray, method::ConstrainedOptimizer,
options::Options = Options(;default_options(method)...))
twicediffed = d isa TwiceDifferentiable ? d : TwiceDifferentiable(d, initial_x)
bounds = ConstraintBounds(lower, upper, [], [])
constraints = TwiceDifferentiableConstraints(
(c,x)->nothing, (J,x)->nothing, (H,x,λ)->nothing, bounds)
state = initial_state(method, options, twicediffed, constraints, initial_x)
optimize(twicediffed,
constraints,
initial_x,
method,
options,
state)
end
function optimize(d::AbstractObjective, constraints::AbstractConstraints, initial_x::AbstractArray, method::ConstrainedOptimizer,
options::Options = Options(;default_options(method)...),
state = initial_state(method, options, d, constraints, initial_x))
#== TODO:
Let's try to unify this with the unconstrained `optimize` in Optim
The only thing we'd have to deal with is to dispatch
the univariate `optimize` to one with empty constraints::AbstractConstraints
==#
t0 = time() # Initial time stamp used to control early stopping by options.time_limit
_time = t0
tr = OptimizationTrace{typeof(value(d)), typeof(method)}()
tracing = options.store_trace || options.show_trace || options.extended_trace || options.callback !== nothing
stopped, stopped_by_callback, stopped_by_time_limit = false, false, false
f_limit_reached, g_limit_reached, h_limit_reached = false, false, false
x_converged, f_converged, f_increased, counter_f_tol = false, false, false, 0
g_converged, stopped = initial_convergence(d, state, method, initial_x, options)
converged = g_converged
# prepare iteration counter (used to make "initial state" trace entry)
iteration = 0
options.show_trace && print_header(method)
trace!(tr, d, state, iteration, method, options, t0)
while !converged && !stopped && iteration < options.iterations
iteration += 1
update_state!(d, constraints, state, method, options) && break # it returns true if it's forced by something in update! to stop (eg dx_dg == 0.0 in BFGS or linesearch errors)
update_fg!(d, constraints, state, method)
# TODO: Do we need to rethink f_increased for `ConstrainedOptimizer`s?
x_converged, f_converged,
g_converged, f_increased = assess_convergence(state, d, options)
# With equality constraints, optimization is not necessarily
# monotonic in the value of the function. If the function
# change is approximately canceled by a change in the equality
# violation, it's possible to spuriously satisfy the f_tol
# criterion. Consequently, we require that the f_tol condition
# be satisfied a certain number of times in a row before
# declaring convergence.
counter_f_tol = f_converged ? counter_f_tol+1 : 0
converged = x_converged || g_converged || (counter_f_tol > options.successive_f_tol)
# We don't use the Hessian for anything if we have declared convergence,
# so we might as well not make the (expensive) update if converged == true
!converged && update_h!(d, constraints, state, method)
if tracing
# update trace; callbacks can stop routine early by returning true
stopped_by_callback = trace!(tr, d, state, iteration, method, options)
end
# Check time_limit; if none is provided it is NaN and the comparison
# will always return false.
_time = time()
stopped_by_time_limit = _time-t0 > options.time_limit ? true : false
f_limit_reached = options.f_calls_limit > 0 && f_calls(d) >= options.f_calls_limit ? true : false
g_limit_reached = options.g_calls_limit > 0 && g_calls(d) >= options.g_calls_limit ? true : false
h_limit_reached = options.h_calls_limit > 0 && h_calls(d) >= options.h_calls_limit ? true : false
if (f_increased && !options.allow_f_increases) || stopped_by_callback ||
stopped_by_time_limit || f_limit_reached || g_limit_reached || h_limit_reached
stopped = true
end
end # while
after_while!(d, constraints, state, method, options)
# we can just check minimum, as we've earlier enforced same types/eltypes
# in variables besides the option settings
T = typeof(options.f_reltol)
Tf = typeof(value(d))
f_incr_pick = f_increased && !options.allow_f_increases
return MultivariateOptimizationResults(method,
initial_x,
pick_best_x(f_incr_pick, state),
pick_best_f(f_incr_pick, state, d),
iteration,
iteration == options.iterations,
x_converged,
T(options.x_abstol),
T(options.x_reltol),
x_abschange(state),
x_relchange(state),
f_converged,
T(options.f_abstol),
T(options.f_reltol),
f_abschange(d, state),
f_relchange(d, state),
g_converged,
T(options.g_abstol),
g_residual(d),
f_increased,
tr,
f_calls(d),
g_calls(d),
h_calls(d),
nothing,
options.time_limit,
_time-t0,
NamedTuple())
end
# Fallbacks (for methods that don't need these)
after_while!(d, constraints::AbstractConstraints, state, method, options) = nothing
update_h!(d, constraints::AbstractConstraints, state, method) = nothing
"""
initialize_μ_λ!(state, bounds, μ0=:auto, β=0.01)
initialize_μ_λ!(state, bounds, (Hobj,HcI), μ0=:auto, β=0.01)
Pick μ and λ to ensure that the equality constraints are satisfied
locally (at the current `state.x`), and that the initial gradient
including the barrier would be a descent direction for the problem
without the barrier (μ = 0). This ensures that the search isn't pushed
out of the basin of the user-supplied initial guess.
Upon entry, the objective function gradient, constraint values, and
constraint jacobian must be set in `state.g`, `state.c`, and `state.J`
respectively. If you also wish to ensure that the projection of
Hessian is minimally-perturbed along the initial gradient, supply the
hessian of the objective (`Hobj`) and
HcI = ∑_i (σ_i/s_i)∇∇ c_{Ii}
for the constraints. This can be obtained as
HcI = hessianI(state.x, constraints, 1./state.slack_c)
You can manually specify `μ` by supplying a numerical value for
`μ0`. Whether calculated algorithmically or specified manually, the
values of `λ` are set using the chosen `μ`.
"""
function initialize_μ_λ!(state, bounds::ConstraintBounds, Hinfo, μ0::Union{Symbol,Number}, β::Number=1//100)
if nconstraints(bounds) == 0 && nconstraints_x(bounds) == 0
state.μ = 0
fill!(state.bstate, 0)
return state
end
gf = state.g # must be pre-set to ∇f
# Calculate projection of ∇f into the subspace spanned by the
# equality constraint Jacobian
JE = jacobianE(state, bounds)
# QRF = qrfact(JE)
# Q = QRF[:Q]
# PEg = Q'*(Q*gf) # in the subspace of JE
C = JE*JE'
Cc = cholesky(Positive, C)
Pperpg = gf-JE'*(Cc \ (JE*gf)) # in the nullspace of JE
# Set μ
JI = jacobianI(state, bounds)
if μ0 == :auto
# Calculate projections of the Lagrangian's gradient, and
# possibly hessian, along (∇f)_⟂
Dperp = dot(Pperpg, Pperpg)
σ, s = sigma(bounds), slack(state)
σdivs = σ./s
Δg = JI'*σdivs
PperpΔg = Δg - JE'*(Cc \ (JE*Δg))
DI = dot(PperpΔg, PperpΔg)
κperp, κI = hessian_projections(Hinfo, Pperpg, (JI*Pperpg)./s)
# Calculate μ and λI
μ = β * (κperp == 0 ? sqrt(Dperp/DI) : min(sqrt(Dperp/DI), abs(κperp/κI)))
if !isfinite(μ)
Δgtilde = JI'*(1 ./ s)
PperpΔgtilde = Δgtilde - JE'*(Cc \ (JE*Δgtilde))
DItilde = dot(PperpΔgtilde, PperpΔgtilde)
μ = β*sqrt(Dperp/DItilde)
end
if !isfinite(μ) || μ == 0
μ = one(μ)
end
else
μ = convert(eltype(state.x), μ0)
end
state.μ = μ
# Set λI
@. state.bstate.λx = μ / state.bstate.slack_x
@. state.bstate.λc = μ / state.bstate.slack_c
# Calculate λE
λI = lambdaI(state)
∇bI = gf - JI'*λI
# qrregularize!(QRF) # in case of any 0 eigenvalues
λE = Cc \ (JE*∇bI) + (cbar(bounds) - cE(state, bounds))/μ
k = unpack_vec!(state.bstate.λxE, λE, 0)
k = unpack_vec!(state.bstate.λcE, λE, k)
k == length(λE) || error("Something is wrong when initializing μ and λ.")
state
end
function initialize_μ_λ!(state, bounds::ConstraintBounds, μ0::Union{Number,Symbol}, β::Number=1//100)
initialize_μ_λ!(state, bounds, nothing, μ0, β)
end
function hessian_projections(Hinfo::Tuple{AbstractMatrix,AbstractMatrix}, Pperpg, y)
κperp = dot(Hinfo[1]*Pperpg, Pperpg)
κI = dot(Hinfo[2]*Pperpg, Pperpg) + dot(y,y)
κperp, κI
end
hessian_projections(Hinfo::Nothing, Pperpg::AbstractVector{T}) where T = convert(T, Inf), zero(T)
function jacobianE(state, bounds::ConstraintBounds)
J, x = state.constr_J, state.x
JEx = jacobianx(J, bounds.eqx)
JEc = view(J, bounds.eqc, :)
JE = vcat(JEx, JEc)
end
jacobianE(state, constraints) = jacobianE(state, constraints.bounds)
function jacobianI(state, bounds::ConstraintBounds)
J, x = state.constr_J, state.x
JIx = jacobianx(J, bounds.ineqx)
JIc = view(J, bounds.ineqc, :)
JI = vcat(JIx, JIc)
end
jacobianI(state, constraints) = jacobianI(state, constraints.bounds)
# TODO: when Optim supports sparse arrays, make a SparseMatrixCSC version
function jacobianx(J::AbstractArray, indx)
Jx = zeros(eltype(J), length(indx), size(J, 2))
for (i,j) in enumerate(indx)
Jx[i,j] = 1
end
Jx
end
function sigma(bounds::ConstraintBounds)
[bounds.σx; bounds.σc] # don't include σz
end
sigma(constraints) = sigma(constraints.bounds)
slack(state) = slack(state.bstate)
cbar(bounds::ConstraintBounds) = [bounds.valx; bounds.valc]
cbar(constraints) = cbar(constraints.bounds)
cE(state, bounds::ConstraintBounds) = [state.x[bounds.eqx]; state.constr_c[bounds.eqc]]
function hessianI!(h, x, constraints, λcI, μ)
λ = userλ(λcI, constraints)
constraints.h!(h, x, λ)
h
end
"""
hessianI(x, constraints, λcI, μ) -> h
Compute the hessian at `x` of the `λcI`-weighted sum of user-supplied
constraint functions for just the inequalities. This also includes
contributions from any variables with bounds at 0, since those do not
cause introduction of a slack variable. Other (nonzero) box
constraints do not contribute to `h`, because the hessian of `x_i` is
zero. (They contribute indirectly via their slack variables.)
"""
hessianI(x, constraints, λcI, μ) =
hessianI!(zeros(eltype(x), length(x), length(x)), x, constraints, λcI, μ)
"""
userλ(λcI, bounds) -> λ
Accumulates `λcI` into a vector `λ` ordered as the user-supplied
constraint functions `c`. Upper and lower bounds are summed, weighted
by `σ`. The resulting λ includes an overall negative sign so that this
becomes the coefficient for the user-supplied hessian.
This is relevant only for the inequalities. If you want the λ for just
the equalities, you can use `λ[bounds.ceq] = λcE` for a zero-filled `λ`.
"""
function userλ(λcI, bounds::ConstraintBounds)
ineqc, σc = bounds.ineqc, bounds.σc
λ = zeros(eltype(bounds), nconstraints(bounds))
for i = 1:length(ineqc)
λ[ineqc[i]] -= λcI[i]*σc[i]
end
λ
end
userλ(λcI, constraints) = userλ(λcI, constraints.bounds)
## Computation of the Lagrangian and its gradient
# This is in a parametrization that is also useful during linesearch
# TODO: `lagrangian` does not seem to be used (IPNewton)?
function lagrangian(d, bounds::ConstraintBounds, x, c, bstate::BarrierStateVars, μ)
f_x = NLSolversBase.value!(d, x)
ev = equality_violation(bounds, x, c, bstate)
L_xsλ = f_x + barrier_value(bounds, x, bstate, μ) + ev
f_x, L_xsλ, ev
end
function lagrangian_fg!(gx, bgrad, d, bounds::ConstraintBounds, x, c, J, bstate::BarrierStateVars, μ)
fill!(bgrad, 0)
f_x, g_x = NLSolversBase.value_gradient!(d,x)
gx .= g_x
ev = equality_violation(bounds, x, c, bstate)
L_xsλ = f_x + barrier_value(bounds, x, bstate, μ) + ev
barrier_grad!(bgrad, bounds, x, bstate, μ)
equality_grad!(gx, bgrad, bounds, x, c, J, bstate)
f_x, L_xsλ, ev
end
# TODO: do we need lagrangian_vec? Maybe for automatic differentiation?
## Computation of Lagrangian and derivatives when passing all parameters as a single vector
function lagrangian_vec(p, d, bounds::ConstraintBounds, x, c::AbstractArray, bstate::BarrierStateVars, μ)
unpack_vec!(x, bstate, p)
f_x, L_xsλ, ev = lagrangian(d, bounds, x, c, bstate, μ)
L_xsλ
end
function lagrangian_vec(p, d, bounds::ConstraintBounds, x, c::Function, bstate::BarrierStateVars, μ)
# Use this version when using automatic differentiation
unpack_vec!(x, bstate, p)
f_x, L_xsλ, ev = lagrangian(d, bounds, x, c(x), bstate, μ)
L_xsλ
end
function lagrangian_fgvec!(p, storage, gx, bgrad, d, bounds::ConstraintBounds, x, c, J, bstate::BarrierStateVars, μ)
unpack_vec!(x, bstate, p)
f_x, L_xsλ, ev = lagrangian_fg!(gx, bgrad, d, bounds, x, c, J, bstate, μ)
pack_vec!(storage, gx, bgrad)
L_xsλ
end
## for line searches that don't use the gradient along the line
function lagrangian_linefunc(αs, d, constraints, state)
_lagrangian_linefunc(αs, d, constraints, state)[2]
end
function _lagrangian_linefunc(αs, d, constraints, state)
b_ls, bounds = state.b_ls, constraints.bounds
ls_update!(state.x_ls, state.x, state.s, alphax(αs))
ls_update!(b_ls.bstate, state.bstate, state.bstep, αs)
constraints.c!(b_ls.c, state.x_ls)
lagrangian(d, constraints.bounds, state.x_ls, b_ls.c, b_ls.bstate, state.μ)
end
alphax(α::Number) = α
alphax(αs::Union{Tuple,AbstractVector}) = αs[1]
function lagrangian_linefunc!(α, d, constraints, state, method::IPOptimizer{typeof(backtrack_constrained)})
# For backtrack_constrained, the last evaluation is the one we
# keep, so it's safe to store the results in state
state.f_x, state.L, state.ev = _lagrangian_linefunc(α, d, constraints, state)
state.L
end
lagrangian_linefunc!(α, d, constraints, state, method) = lagrangian_linefunc(α, d, constraints, state)
## for line searches that do use the gradient along the line
function lagrangian_lineslope(αs, d, constraints, state)
f_x, L, ev, slope = _lagrangian_lineslope(αs, d, constraints, state)
L, slope
end
function _lagrangian_lineslope(αs, d, constraints, state)
b_ls, bounds = state.b_ls, constraints.bounds
bstep, bgrad = state.bstep, b_ls.bgrad
ls_update!(state.x_ls, state.x, state.s, alphax(αs))
ls_update!(b_ls.bstate, state.bstate, bstep, αs)
constraints.c!(b_ls.c, state.x_ls)
constraints.jacobian!(b_ls.J, state.x_ls)
f_x, L, ev = lagrangian_fg!(state.g, bgrad, d, bounds, state.x_ls, b_ls.c, b_ls.J, b_ls.bstate, state.μ)
slopeα = slopealpha(state.s, state.g, bstep, bgrad)
f_x, L, ev, slopeα
end
function lagrangian_lineslope!(αs, d, constraints, state, method::IPOptimizer{typeof(backtrack_constrained_grad)})
# For backtrack_constrained, the last evaluation is the one we
# keep, so it's safe to store the results in state
state.f_x, state.L, state.ev, slope = _lagrangian_lineslope(αs, d, constraints, state)
state.L, slope
end
lagrangian_lineslope!(αs, d, constraints, state, method) = lagrangian_lineslope(αs, d, constraints, state)
slopealpha(sx, gx, bstep, bgrad) = dot(sx, gx) +
dot(bstep.slack_x, bgrad.slack_x) + dot(bstep.slack_c, bgrad.slack_c) +
dot(bstep.λx, bgrad.λx) + dot(bstep.λc, bgrad.λc) +
dot(bstep.λxE, bgrad.λxE) + dot(bstep.λcE, bgrad.λcE)
function linesearch_anon(d, constraints, state, method::IPOptimizer{typeof(backtrack_constrained_grad)})
αs->lagrangian_lineslope!(αs, d, constraints, state, method)
end
function linesearch_anon(d, constraints, state, method::IPOptimizer{typeof(backtrack_constrained)})
αs->lagrangian_linefunc!(αs, d, constraints, state, method)
end
## Computation of Lagrangian terms: barrier penalty
"""
barrier_value(constraints, state) -> val
barrier_value(bounds, x, sx, sc, μ) -> val
Compute the value of the barrier penalty at the current `state`, or at
a position (`x`,`sx`,`sc`), where `x` is the current position, `sx`
are the coordinate slack variables, and `sc` are the linear/nonlinear
slack variables. `bounds` holds the parsed bounds.
"""
function barrier_value(bounds::ConstraintBounds, x, sx, sc, μ)
# bμ is the coefficient of μ in the barrier penalty
bμ = _bv(sx) + # coords with other bounds
_bv(sc) # linear/nonlinear constr.
μ*bμ
end
barrier_value(bounds::ConstraintBounds, x, bstate::BarrierStateVars, μ) =
barrier_value(bounds, x, bstate.slack_x, bstate.slack_c, μ)
barrier_value(bounds::ConstraintBounds, state) =
barrier_value(bounds, state.x, state.bstate.slack_x, state.bstate.slack_c, state.μ)
barrier_value(constraints::AbstractConstraints, state) =
barrier_value(constraints.bounds, state)
# don'tcall this barrier_value because it lacks μ
function _bv(v, idx, σ) # TODO: Not used, delete? (IPNewton)
ret = loginf(one(eltype(σ))*one(eltype(v)))
for (i,iv) in enumerate(idx)
ret += loginf(σ[i]*v[iv])
end
-ret
end
_bv(v) = isempty(v) ? loginf(one(eltype(v))) : -sum(loginf, v)
loginf(δ) = δ > 0 ? log(δ) : -oftype(δ, Inf)
"""
barrier_grad!(bgrad, bounds, x, bstate, μ)
barrier_grad!(gsx, gsc, bounds, x, sx, sc, μ)
Compute the gradient of the barrier penalty at (`x`,`sx`,`sc`), where
`x` is the current position, `sx` are the coordinate slack variables,
and `sc` are the linear/nonlinear slack
variables. `bounds::ConstraintBounds` holds the parsed bounds.
The result is *added* to `gsx`, and `gsc`, so these vectors
need to be initialized appropriately.
"""
function barrier_grad!(gsx, gsc, bounds::ConstraintBounds, x, sx, sc, μ)
barrier_grad!(gsx, sx, μ)
barrier_grad!(gsc, sc, μ)
nothing
end
barrier_grad!(bgrad, bounds::ConstraintBounds, x, bstate, μ) =
barrier_grad!(bgrad.slack_x, bgrad.slack_c, bounds, x, bstate.slack_x, bstate.slack_c, μ)
function barrier_grad!(out, v, μ)
for i = 1:length(out)
out[i] -= μ/v[i]
end
nothing
end
## Computation of Lagrangian terms: equality constraints penalty
"""
equality_violation([f=identity], bounds, x, c, bstate) -> val
equality_violation([f=identity], bounds, x, c, sx, sc, λx, λc, λxE, λcE) -> val
Compute the sum of `f(v_i)`, where `v_i = λ_i*(target - observed)`
measures the difference between the current state and the
equality-constrained state. `bounds::ConstraintBounds` holds the
parsed bounds. `x` is the current position, `sx` are the coordinate
slack variables, and `sc` are the linear/nonlinear slack
variables. `c` holds the values of the linear-nonlinear constraints,
and the λ arguments hold the Lagrange multipliers for `x`, `sx`, `sc`, and
`c` respectively.
"""
function equality_violation(f, bounds::ConstraintBounds, x, c, sx, sc, λx, λc, λxE, λcE)
ev = equality_violation(f, sx, x, bounds.ineqx, bounds.σx, bounds.bx, λx) +
equality_violation(f, sc, c, bounds.ineqc, bounds.σc, bounds.bc, λc) +
equality_violation(f, x, bounds.valx, bounds.eqx, λxE) +
equality_violation(f, c, bounds.valc, bounds.eqc, λcE)
end
equality_violation(bounds::ConstraintBounds, x, c, sx, sc, λx, λc, λxE, λcE) =
equality_violation(identity, bounds, x, c, sx, sc, λx, λc, λxE, λcE)
function equality_violation(f, bounds::ConstraintBounds, x, c, bstate::BarrierStateVars)
equality_violation(f, bounds, x, c, bstate.slack_x, bstate.slack_c,
bstate.λx, bstate.λc, bstate.λxE, bstate.λcE)
end
equality_violation(bounds::ConstraintBounds, x, c, bstate::BarrierStateVars) =
equality_violation(identity, bounds, x, c, bstate)
equality_violation(f, bounds::ConstraintBounds, state::AbstractBarrierState) =
equality_violation(f, bounds, state.x, state.constr_c, state.bstate)
equality_violation(bounds::ConstraintBounds, state::AbstractBarrierState) =
equality_violation(identity, bounds, state)
equality_violation(f, constraints::AbstractConstraints, state::AbstractBarrierState) =
equality_violation(f, constraints.bounds, state)
equality_violation(constraints::AbstractConstraints, state::AbstractBarrierState) =
equality_violation(constraints.bounds, state)
# violations of s = σ*(v-b)
function equality_violation(f, s, v, ineq, σ, b, λ)
ret = f(zero(eltype(λ))*(zero(eltype(s))-zero(eltype(σ))*(zero(eltype(v))-zero(eltype(b)))))
for (i,iv) in enumerate(ineq)
ret += f(λ[i]*(s[i] - σ[i]*(v[iv]-b[i])))
end
ret
end
# violations of v = target
function equality_violation(f, v, target, idx, λ)
ret = f(zero(eltype(λ))*(zero(eltype(v))-zero(eltype(target))))
for (i,iv) in enumerate(idx)
ret += f(λ[i]*(target[i] - v[iv]))
end
ret
end
"""
equality_grad!(gx, gbstate, bounds, x, c, J, bstate)
Compute the gradient of `equality_violation`, storing the result in `gx` (an array) and `gbstate::BarrierStateVars`.
"""
function equality_grad!(gx, gsx, gsc, gλx, gλc, gλxE, gλcE, bounds::ConstraintBounds, x, c, J, sx, sc, λx, λc, λxE, λcE)
equality_grad_var!(gsx, gx, bounds.ineqx, bounds.σx, λx)
equality_grad_var!(gsc, gx, bounds.ineqc, bounds.σc, λc, J)
gx[bounds.eqx] .= gx[bounds.eqx] .- λxE
equality_grad_var!(gx, bounds.eqc, λcE, J)
equality_grad_λ!(gλx, sx, x, bounds.ineqx, bounds.σx, bounds.bx)
equality_grad_λ!(gλc, sc, c, bounds.ineqc, bounds.σc, bounds.bc)
equality_grad_λ!(gλxE, x, bounds.valx, bounds.eqx)
equality_grad_λ!(gλcE, c, bounds.valc, bounds.eqc)
end
equality_grad!(gx, gb::BarrierStateVars, bounds::ConstraintBounds, x, c, J, b::BarrierStateVars) =
equality_grad!(gx, gb.slack_x, gb.slack_c, gb.λx, gb.λc, gb.λxE, gb.λcE,
bounds, x, c, J,
b.slack_x, b.slack_c, b.λx, b.λc, b.λxE, b.λcE)
# violations of s = σ*(x-b)
function equality_grad_var!(gs, gx, ineq, σ, λ)
for (i,ix) in enumerate(ineq)
λi = λ[i]
gs[i] += λi
gx[ix] -= λi*σ[i]
end
nothing
end
function equality_grad_var!(gs, gx, ineq, σ, λ, J)
@. gs = gs + λ
if !isempty(ineq)
gx .= gx .- view(J, ineq, :)'*(λ.*σ)
end
nothing
end
function equality_grad_λ!(gλ, s, v, ineq, σ, b)
for (i,iv) in enumerate(ineq)
gλ[i] += s[i] - σ[i]*(v[iv]-b[i])
end
nothing
end
# violations of v = target
function equality_grad_var!(gx, idx, λ, J)
if !isempty(idx)
gx .= gx .- view(J, idx, :)'*λ
end
nothing
end
function equality_grad_λ!(gλ, v, target, idx)
for (i,iv) in enumerate(idx)
gλ[i] += target[i] - v[iv]
end
nothing
end
"""
isfeasible(constraints, state) -> Bool
isfeasible(constraints, x, c) -> Bool
isfeasible(constraints, x) -> Bool
isfeasible(bounds, x, c) -> Bool
Return `true` if point `x` is feasible, given the `constraints` which
specify bounds `lx`, `ux`, `lc`, and `uc`. `x` is feasible if
lx[i] <= x[i] <= ux[i]
lc[i] <= c[i] <= uc[i]
for all possible `i`.
"""
function isfeasible(bounds::ConstraintBounds, x, c)
isf = true
for (i,j) in enumerate(bounds.eqx)
isf &= x[j] == bounds.valx[i]
end
for (i,j) in enumerate(bounds.ineqx)
isf &= bounds.σx[i]*(x[j] - bounds.bx[i]) >= 0
end
for (i,j) in enumerate(bounds.eqc)
isf &= c[j] == bounds.valc[i]
end
for (i,j) in enumerate(bounds.ineqc)
isf &= bounds.σc[i]*(c[j] - bounds.bc[i]) >= 0
end
isf
end
isfeasible(constraints, state::AbstractBarrierState) = isfeasible(constraints, state.x, state.constraints_c)
function isfeasible(constraints, x)
# don't assume c! returns c (which means this is a little more awkward)
c = Array{eltype(x)}(undef, constraints.bounds.nc)
constraints.c!(c, x)
isfeasible(constraints, x, c)
end
isfeasible(constraints::AbstractConstraints, x, c) = isfeasible(constraints.bounds, x, c)
isfeasible(constraints::Nothing, state::AbstractBarrierState) = true
isfeasible(constraints::Nothing, x) = true
"""
isinterior(constraints, state) -> Bool
isinterior(constraints, x, c) -> Bool
isinterior(constraints, x) -> Bool
isinterior(bounds, x, c) -> Bool
Return `true` if point `x` is on the interior of the allowed region,
given the `constraints` which specify bounds `lx`, `ux`, `lc`, and
`uc`. `x` is in the interior if
lx[i] < x[i] < ux[i]
lc[i] < c[i] < uc[i]
for all possible `i`.
"""
function isinterior(bounds::ConstraintBounds, x, c)
isi = true
for (i,j) in enumerate(bounds.ineqx)
isi &= bounds.σx[i]*(x[j] - bounds.bx[i]) > 0
end
for (i,j) in enumerate(bounds.ineqc)
isi &= bounds.σc[i]*(c[j] - bounds.bc[i]) > 0
end
isi
end
isinterior(constraints, state::AbstractBarrierState) = isinterior(constraints, state.x, state.constraints_c)
function isinterior(constraints, x)
c = Array{eltype(x)}(undef, constraints.bounds.nc)
constraints.c!(c, x)
isinterior(constraints, x, c)
end
isinterior(constraints::AbstractConstraints, x, c) = isinterior(constraints.bounds, x, c)
isinterior(constraints::Nothing, state::AbstractBarrierState) = true
isinterior(constraints::Nothing, x) = true
## Utilities for representing total state as single vector
# TODO: Most of these seem to be unused (IPNewton)?
function pack_vec(x, b::BarrierStateVars)
n = length(x)
for fn in fieldnames(b)
n += length(getfield(b, fn))
end
vec = Array{eltype(x)}(undef, n)
pack_vec!(vec, x, b)
end
function pack_vec!(vec, x, b::BarrierStateVars)
k = pack_vec!(vec, x, 0)
for fn in fieldnames(b)
k = pack_vec!(vec, getfield(b, fn), k)
end
k == length(vec) || throw(DimensionMismatch("vec should have length $k, got $(length(vec))"))
vec
end
function pack_vec!(vec, x, k::Int)
for i = 1:length(x)
vec[k+=1] = x[i]
end
k
end
function unpack_vec!(x, b::BarrierStateVars, vec::Vector)
k = unpack_vec!(x, vec, 0)
for fn in fieldnames(b)
k = unpack_vec!(getfield(b, fn), vec, k)
end
k == length(vec) || throw(DimensionMismatch("vec should have length $k, got $(length(vec))"))
x, b
end
function unpack_vec!(x, vec::Vector, k::Int)
for i = 1:length(x)
x[i] = vec[k+=1]
end
k
end
## More utilities
function estimate_maxstep(αmax, x, s)
for i = 1:length(s)
si = s[i]
if si < 0
αmax = min(αmax, -x[i]/si)
end
end
αmax
end
# TODO: This is not used anymore??
function qrregularize!(QRF)
R = QRF[:R]
for i = 1:size(R, 1)
if R[i,i] == 0
R[i,i] = 1
end
end
QRF
end