-
-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathegraph.jl
547 lines (445 loc) · 14.5 KB
/
egraph.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# Functional implementation of https://egraphs-good.github.io/
# https://dl.acm.org/doi/10.1145/3434304
"""
modify!(eclass::EClass{Analysis})
The `modify!` function for EGraph Analysis can optionally modify the eclass
`eclass` after it has been analyzed, typically by adding an e-node.
It should be **idempotent** if no other changes occur to the EClass.
(See the [egg paper](https://dl.acm.org/doi/pdf/10.1145/3434304)).
"""
function modify! end
"""
join(a::AnalysisType, b::AnalysisType)::AnalysisType
Joins two analyses values into a single one, used by [analyze!](@ref)
when two eclasses are being merged or the analysis is being constructed.
"""
function join end
"""
make(g::EGraph{ExpressionType, AnalysisType}, n::VecExpr)::AnalysisType where {ExpressionType}
Given an e-node `n`, `make` should return the corresponding analysis value.
"""
function make end
"""
EClass{D}
An `EClass` is an equivalence class of terms.
The children and parent nodes are stored as [`VecExpr`](@ref)s for performance, which
means that without a reference to the [`EGraph`](@ref) object we cannot re-build human-readable terms
they represent. The [`EGraph`](@ref) itself comes with pretty printing for human-readable terms.
"""
struct EClass{D}
id::Id
nodes::Vector{VecExpr}
parents::Vector{Pair{VecExpr,Id}}
data::Union{D,Nothing}
end
# Interface for indexing EClass
Base.getindex(a::EClass, i) = a.nodes[i]
# Interface for iterating EClass
Base.iterate(a::EClass) = iterate(a.nodes)
Base.iterate(a::EClass, state) = iterate(a.nodes, state)
Base.length(a::EClass) = length(a.nodes)
# Showing
function Base.show(io::IO, a::EClass)
println(io, "$(typeof(a)) %$(a.id) with $(length(a.nodes)) e-nodes:")
println(io, " data: $(a.data)")
println(io, " nodes:")
for n in a.nodes
println(io, " $n")
end
end
function addparent!(@nospecialize(a::EClass), n::VecExpr, id::Id)
push!(a.parents, (n => id))
end
function merge_analysis_data!(a::EClass{D}, b::EClass{D})::Tuple{Bool,Bool,Union{D,Nothing}} where {D}
if !isnothing(a.data) && !isnothing(b.data)
new_a_data = join(a.data, b.data)
(a.data == new_a_data, b.data == new_a_data, new_a_data)
elseif isnothing(a.data) && !isnothing(b.data)
# a merged, b not merged
(true, false, b.data)
elseif !isnothing(a.data) && isnothing(b.data)
(false, true, a.data)
else
(false, false, nothing)
end
end
"""
There's no need of computing hash for dictionaries where keys are UInt64.
Wrap them in an immutable struct that overrides `hash`.
TODO: this is rather hacky. We need a more performant dict implementation.
Trick from: https://discourse.julialang.org/t/dictionary-with-custom-hash-function/49168
"""
struct IdKey
val::Id
end
Base.hash(a::IdKey, h::UInt) = xor(a.val, h)
Base.:(==)(a::IdKey, b::IdKey) = a.val == b.val
"""
EGraph{ExpressionType,Analysis}
A concrete type representing an *e-graph*.
An [`EGraph`](@ref) is a set of equivalence classes ([`EClass`](@ref)).
An `EClass` is in turn a set of e-nodes representing equivalent terms.
An e-node points to a set of children e-classes.
In Metatheory.jl, an e-node is implemented as a [`VecExpr`](@ref) for performance reasons.
The IDs stored in an e-node (i.e. `VecExpr`) or an `EClass` by themselves are
not necessarily very informative, but you can access the terms of each e-node
via `Metatheory.to_expr`.
See the [egg paper](https://dl.acm.org/doi/pdf/10.1145/3434304)
for implementation details.
"""
mutable struct EGraph{ExpressionType,Analysis}
"stores the equality relations over e-class ids"
uf::UnionFind
"map from eclass id to eclasses"
classes::Dict{IdKey,EClass{Analysis}}
"hashcons mapping e-nodes to their e-class id"
memo::Dict{VecExpr,Id}
"Hashcons the constants in the e-graph"
constants::Dict{UInt64,Any}
"Nodes which need to be processed for rebuilding. The id is the id of the enode, not the canonical id of the eclass."
pending::Vector{Pair{VecExpr,Id}}
analysis_pending::UniqueQueue{Pair{VecExpr,Id}}
root::Id
"a cache mapping signatures (function symbols and their arity) to e-classes that contain e-nodes with that function symbol."
classes_by_op::Dict{IdKey,Vector{Id}}
clean::Bool
"If we use global buffers we may need to lock. Defaults to false."
needslock::Bool
lock::ReentrantLock
end
"""
EGraph(expr)
Construct an EGraph from a starting symbolic expression `expr`.
"""
function EGraph{ExpressionType,Analysis}(; needslock::Bool = false) where {ExpressionType,Analysis}
EGraph{ExpressionType,Analysis}(
UnionFind(),
Dict{IdKey,EClass{Analysis}}(),
Dict{VecExpr,Id}(),
Dict{UInt64,Any}(),
Pair{VecExpr,Id}[],
UniqueQueue{Pair{VecExpr,Id}}(),
0,
Dict{IdKey,Vector{Id}}(),
false,
needslock,
ReentrantLock(),
)
end
EGraph(; kwargs...) = EGraph{Expr,Nothing}(; kwargs...)
EGraph{ExpressionType}(; kwargs...) where {ExpressionType} = EGraph{ExpressionType,Nothing}(; kwargs...)
function EGraph{ExpressionType,Analysis}(e; kwargs...) where {ExpressionType,Analysis}
g = EGraph{ExpressionType,Analysis}(; kwargs...)
g.root = addexpr!(g, e)
g
end
EGraph{ExpressionType}(e; kwargs...) where {ExpressionType} = EGraph{ExpressionType,Nothing}(e; kwargs...)
EGraph(e; kwargs...) = EGraph{typeof(e),Nothing}(e; kwargs...)
# Fallback implementation for analysis methods make and modify
@inline make(::EGraph, ::VecExpr) = nothing
@inline modify!(::EGraph, ::EClass{Analysis}) where {Analysis} = nothing
@inline get_constant(@nospecialize(g::EGraph), hash::UInt64) = g.constants[hash]
@inline has_constant(@nospecialize(g::EGraph), hash::UInt64)::Bool = haskey(g.constants, hash)
@inline function add_constant!(@nospecialize(g::EGraph), @nospecialize(c))::Id
h = hash(c)
get!(g.constants, h, c)
h
end
@inline function add_constant_hashed!(@nospecialize(g::EGraph), @nospecialize(c), h::UInt64)::Id
g.constants[h] = c
h
end
function to_expr(g::EGraph, n::VecExpr)
v_isexpr(n) || return get_constant(g, v_head(n))
h = get_constant(g, v_head(n))
args = Core.SSAValue.(Int.(v_children(n)))
if v_iscall(n)
maketerm(Expr, :call, [h; args], nothing)
else
maketerm(Expr, h, args, nothing)
end
end
function pretty_dict(g::EGraph)
d = Dict{Int,Vector{Any}}()
for (class_id, eclass) in g.classes
d[class_id.val] = map(n -> to_expr(g, n), eclass.nodes)
end
d
end
export pretty_dict
function Base.show(io::IO, g::EGraph)
d = pretty_dict(g)
t = "$(typeof(g)) with $(length(d)) e-classes:"
cs = map(sort!(collect(d); by = first)) do (k, vect)
" $k => [$(Base.join(vect, ", "))]"
end
print(io, Base.join([t; cs], "\n"))
end
"""
Returns the canonical e-class id for a given e-class.
"""
@inline find(g::EGraph, a::Id)::Id = find(g.uf, a)
@inline find(@nospecialize(g::EGraph), @nospecialize(a::EClass))::Id = find(g, a.id)
@inline Base.getindex(g::EGraph, i::Id) = g.classes[IdKey(find(g, i))]
# function canonicalize(g::EGraph, n::VecExpr)::VecExpr
# if !v_isexpr(n)
# v_hash!(n)
# return n
# end
# l = v_arity(n)
# new_n = v_new(l)
# v_set_flag!(new_n, v_flags(n))
# v_set_head!(new_n, v_head(n))
# for i in v_children_range(n)
# @inbounds new_n[i] = find(g, n[i])
# end
# v_hash!(new_n)
# new_n
# end
function canonicalize!(g::EGraph, n::VecExpr)
v_isexpr(n) || @goto ret
for i in (VECEXPR_META_LENGTH + 1):length(n)
@inbounds n[i] = find(g, n[i])
end
v_unset_hash!(n)
@label ret
v_hash!(n)
n
end
function lookup(g::EGraph, n::VecExpr)::Id
canonicalize!(g, n)
h = IdKey(v_hash(n))
haskey(g.memo, n) ? find(g, g.memo[n]) : 0
end
function add_class_by_op(g::EGraph, n, eclass_id)
key = IdKey(v_signature(n))
if haskey(g.classes_by_op, key)
push!(g.classes_by_op[key], eclass_id)
else
g.classes_by_op[key] = [eclass_id]
end
end
"""
Inserts an e-node in an [`EGraph`](@ref)
"""
function add!(g::EGraph{ExpressionType,Analysis}, n::VecExpr, should_copy::Bool)::Id where {ExpressionType,Analysis}
canonicalize!(g, n)
haskey(g.memo, n) && return g.memo[n]
if should_copy
n = copy(n)
end
id = push!(g.uf) # create new singleton eclass
if v_isexpr(n)
for c_id in v_children(n)
addparent!(g.classes[IdKey(c_id)], n, id)
end
end
g.memo[n] = id
add_class_by_op(g, n, id)
eclass = EClass{Analysis}(id, VecExpr[n], Pair{VecExpr,Id}[], make(g, n))
g.classes[IdKey(id)] = eclass
modify!(g, eclass)
push!(g.pending, n => id)
return id
end
"""
Extend this function on your types to do preliminary
preprocessing of a symbolic term before adding it to
an EGraph. Most common preprocessing techniques are binarization
of n-ary terms and metadata stripping.
"""
function preprocess(e::Expr)
cleanast(e)
end
preprocess(x) = x
"""
Recursively traverse an type satisfying the `TermInterface` and insert terms into an
[`EGraph`](@ref). If `e` has no children (has an arity of 0) then directly
insert the literal into the [`EGraph`](@ref).
"""
function addexpr!(g::EGraph, se)::Id
se isa EClass && return se.id
e = preprocess(se)
n = if isexpr(e)
args = iscall(e) ? arguments(e) : children(e)
ar = length(args)
n = v_new(ar)
v_set_flag!(n, VECEXPR_FLAG_ISTREE)
iscall(e) && v_set_flag!(n, VECEXPR_FLAG_ISCALL)
h = iscall(e) ? operation(e) : head(e)
v_set_head!(n, add_constant!(g, h))
# get the signature from op and arity
v_set_signature!(n, hash(maybe_quote_operation(h), hash(ar)))
for i in v_children_range(n)
@inbounds n[i] = addexpr!(g, args[i - VECEXPR_META_LENGTH])
end
n
else # constant enode
VecExpr(Id[Id(0), Id(0), Id(0), add_constant!(g, e)])
end
id = add!(g, n, false)
return id
end
"""
Given an [`EGraph`](@ref) and two e-class ids, set
the two e-classes as equal.
"""
function Base.union!(
g::EGraph{ExpressionType,AnalysisType},
enode_id1::Id,
enode_id2::Id,
)::Bool where {ExpressionType,AnalysisType}
g.clean = false
id_1 = IdKey(find(g, enode_id1))
id_2 = IdKey(find(g, enode_id2))
id_1 == id_2 && return false
# Make sure class 2 has fewer parents
if length(g.classes[id_1].parents) < length(g.classes[id_2].parents)
id_1, id_2 = id_2, id_1
end
union!(g.uf, id_1.val, id_2.val)
eclass_2 = pop!(g.classes, id_2)::EClass
eclass_1 = g.classes[id_1]::EClass
append!(g.pending, eclass_2.parents)
(merged_1, merged_2, new_data) = merge_analysis_data!(eclass_1, eclass_2)
merged_1 && append!(g.analysis_pending, eclass_1.parents)
merged_2 && append!(g.analysis_pending, eclass_2.parents)
new_eclass = EClass{AnalysisType}(
id_1.val,
append!(eclass_1.nodes, eclass_2.nodes),
append!(eclass_1.parents, eclass_2.parents),
new_data,
)
g.classes[id_1] = new_eclass
return true
end
function in_same_class(g::EGraph, ids::Id...)::Bool
nids = length(ids)
nids == 1 && return true
first_id = find(g, ids[1])
for i in 2:nids
first_id == find(g, ids[i]) || return false
end
true
end
function rebuild_classes!(g::EGraph)
for v in values(g.classes_by_op)
empty!(v)
end
for (eclass_id, eclass) in g.classes
# old_len = length(eclass.nodes)
for n in eclass.nodes
canonicalize!(g, n)
end
# Sort to go in order?
unique!(eclass.nodes)
for n in eclass.nodes
add_class_by_op(g, n, eclass_id.val)
end
end
for v in values(g.classes_by_op)
sort!(v)
unique!(v)
end
end
function process_unions!(g::EGraph{ExpressionType,AnalysisType})::Int where {ExpressionType,AnalysisType}
n_unions = 0
while !isempty(g.pending) || !isempty(g.analysis_pending)
while !isempty(g.pending)
(node::VecExpr, eclass_id::Id) = pop!(g.pending)
canonicalize!(g, node)
if haskey(g.memo, node)
old_class_id = g.memo[node]
g.memo[node] = eclass_id
did_something = union!(g, old_class_id, eclass_id)
# TODO unique! can node dedup be moved here? compare performance
# did_something && unique!(g[eclass_id].nodes)
n_unions += did_something
end
end
while !isempty(g.analysis_pending)
(node::VecExpr, eclass_id::Id) = pop!(g.analysis_pending)
eclass_id = find(g, eclass_id)
eclass_id_key = IdKey(eclass_id)
eclass = g.classes[eclass_id_key]
node_data = make(g, node)
if !isnothing(eclass.data)
joined_data = join(eclass.data, node_data)
if joined_data != eclass.data
g.classes[eclass_id_key] = EClass{AnalysisType}(eclass_id, eclass.nodes, eclass.parents, joined_data)
# eclass.data = joined_data
modify!(g, eclass)
append!(g.analysis_pending, eclass.parents)
end
else
g.classes[eclass_id_key] = EClass{AnalysisType}(eclass_id, eclass.nodes, eclass.parents, node_data)
# eclass.data = node_data
modify!(g, eclass)
end
end
end
n_unions
end
function check_memo(g::EGraph)::Bool
test_memo = Dict{VecExpr,Id}()
for (id, class) in g.classes
@assert id.val == class.id
for node in class.nodes
if haskey(test_memo, node)
old_id = test_memo[node]
test_memo[node] = id.val
@assert find(g, old_id) == find(g, id.val) "Unexpected equivalence $node $(g[find(g, id.val)].nodes) $(g[find(g, old_id)].nodes)"
end
end
end
for (node, id) in test_memo
@assert id == find(g, id)
@assert id == find(g, g.memo[node])
end
true
end
function check_analysis(g)
for (id, eclass) in g.classes
isnothing(eclass.data) && continue
pass = mapreduce(x -> make(g, x), (x, y) -> join(x, y), eclass)
@assert eclass.data == pass
end
true
end
"""
This function restores invariants and executes
upwards merging in an [`EGraph`](@ref). See
the [egg paper](https://dl.acm.org/doi/pdf/10.1145/3434304)
for more details.
"""
function rebuild!(g::EGraph)
n_unions = process_unions!(g)
trimmed_nodes = rebuild_classes!(g)
# @assert check_memo(g)
# @assert check_analysis(g)
g.clean = true
@debug "REBUILT" n_unions trimmed_nodes
end
# Thanks to Max Willsey and Yihong Zhang
function lookup_pat(g::EGraph{ExpressionType}, p::PatExpr)::Id where {ExpressionType}
@assert isground(p)
args = children(p)
h = v_head(p.n)
has_op = has_constant(g, h) || (h != p.quoted_head_hash && has_constant(g, p.quoted_head_hash))
has_op || return 0
for i in v_children_range(p.n)
@inbounds p.n[i] = lookup_pat(g, args[i - VECEXPR_META_LENGTH])
p.n[i] <= 0 && return 0
end
id = lookup(g, p.n)
if id <= 0 && h != p.quoted_head_hash
v_set_head!(p.n, p.quoted_head_hash)
id = lookup(g, p.n)
v_set_head!(p.n, p.head_hash)
end
id
end
function lookup_pat(g::EGraph, p::PatLiteral)::Id
h = last(p.n)
has_constant(g, h) ? lookup(g, p.n) : 0
end