-
Notifications
You must be signed in to change notification settings - Fork 116
/
code.jl
773 lines (623 loc) · 21.7 KB
/
code.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
module Code
using StaticArrays, SparseArrays, LinearAlgebra, NaNMath, SpecialFunctions
export toexpr, Assignment, (←), Let, Func, DestructuredArgs, LiteralExpr,
SetArray, MakeArray, MakeSparseArray, MakeTuple, AtIndex,
SpawnFetch, Multithreaded, cse
import ..SymbolicUtils
import ..SymbolicUtils.Rewriters
import SymbolicUtils: @matchable, BasicSymbolic, Sym, Term, iscall, operation, arguments, issym,
symtype, sorted_arguments, metadata, isterm, term, maketerm
import SymbolicIndexingInterface: symbolic_type, NotSymbolic
##== state management ==##
struct NameState
rewrites::Dict{Any, Any}
end
NameState() = NameState(Dict{Any, Any}())
function union_rewrites!(n, ts)
for t in ts
n[t] = Symbol(string(t))
end
end
struct LazyState
ref::Ref{Any}
end
LazyState() = LazyState(Ref{Any}(nothing))
function Base.get(st::LazyState)
s = getfield(st, :ref)[]
s === nothing ? getfield(st, :ref)[] = NameState() : s
end
@inline Base.getproperty(st::LazyState, f::Symbol) = f==:symbolify ? getproperty(st, :rewrites) : getproperty(get(st), f)
##========================##
"""
toexpr(ex, [st,])
Convert a symbolic expression into an `Expr`, suitable to be passed into `eval`.
For example,
```julia
julia> @syms a b
(a, b)
julia> toexpr(a+b)
:((+)(a, b))
julia> toexpr(a+b) |> dump
Expr
head: Symbol call
args: Array{Any}((3,))
1: + (function of type typeof(+))
2: Symbol a
3: Symbol b
```
Note that the function is an actual function object.
For more complex expressions, see other code-related combinators,
Namely `Assignment`, `Let`, `Func`, `SetArray`, `MakeArray`, `MakeSparseArray` and
`MakeTuple`.
To make your own type convertible to Expr using `toexpr` define `toexpr(x, st)` and
forward the state `st` in internal calls to `toexpr`. `st` is state used to know
when to leave something like `y(t)` as it is or when to make it `var"y(t)"`. E.g.
when `y(t)` is itself the argument of a function rather than `y`.
"""
toexpr(x) = toexpr(x, LazyState())
@matchable struct Assignment
lhs
rhs
end
"""
Assignment(lhs, rhs)
An assignment expression. Shorthand `lhs ← rhs` (`\\leftarrow`)
"""
Assignment
lhs(a::Assignment) = a.lhs
rhs(a::Assignment) = a.rhs
const (←) = Assignment
Base.convert(::Type{Assignment}, p::Pair) = Assignment(pair[1], pair[2])
toexpr(a::Assignment, st) = :($(toexpr(a.lhs, st)) = $(toexpr(a.rhs, st)))
const NaNMathFuns = (
sin,
cos,
tan,
asin,
acos,
acosh,
atanh,
log,
log2,
log10,
lgamma,
log1p,
sqrt,
)
function function_to_expr(op, O, st)
(get(st.rewrites, :nanmath, false) && op in NaNMathFuns) || return nothing
name = nameof(op)
fun = GlobalRef(NaNMath, name)
args = map(Base.Fix2(toexpr, st), arguments(O))
expr = Expr(:call, fun)
append!(expr.args, args)
return expr
end
function function_to_expr(op::Union{typeof(*),typeof(+)}, O, st)
out = get(st.rewrites, O, nothing)
out === nothing || return out
args = map(Base.Fix2(toexpr, st), sorted_arguments(O))
if length(args) >= 3 && symtype(O) <: Number
x, xs = Iterators.peel(args)
foldl(xs, init=x) do a, b
Expr(:call, op, a, b)
end
else
expr = Expr(:call, op)
append!(expr.args, args)
expr
end
end
function function_to_expr(::typeof(^), O, st)
args = arguments(O)
if length(args) == 2 && args[2] isa Real && args[2] < 0
ex = args[1]
if args[2] == -1
return toexpr(Term(inv, Any[ex]), st)
else
return toexpr(Term(^, Any[Term(inv, Any[ex]), -args[2]]), st)
end
end
return nothing
end
function function_to_expr(::typeof(SymbolicUtils.ifelse), O, st)
args = arguments(O)
:($(toexpr(args[1], st)) ? $(toexpr(args[2], st)) : $(toexpr(args[3], st)))
end
function function_to_expr(x::BasicSymbolic, O, st)
issym(x) ? get(st.rewrites, O, nothing) : nothing
end
toexpr(O::Expr, st) = O
function substitute_name(O, st)
if (issym(O) || iscall(O)) && haskey(st.rewrites, O)
st.rewrites[O]
else
O
end
end
function _is_array_of_symbolics(O)
# O is an array, not a symbolic array, and either has a non-symbolic eltype or contains elements that are
# symbolic or arrays of symbolics
return O isa AbstractArray && symbolic_type(O) == NotSymbolic() &&
(symbolic_type(eltype(O)) != NotSymbolic() ||
any(x -> symbolic_type(x) != NotSymbolic() || _is_array_of_symbolics(x), O))
end
function toexpr(O, st)
if issym(O)
O = substitute_name(O, st)
return issym(O) ? nameof(O) : toexpr(O, st)
end
O = substitute_name(O, st)
if _is_array_of_symbolics(O)
return toexpr(MakeArray(O, typeof(O)), st)
end
!iscall(O) && return O
op = operation(O)
expr′ = function_to_expr(op, O, st)
if expr′ !== nothing
return expr′
else
!iscall(O) && return O
args = arguments(O)
return Expr(:call, toexpr(op, st), map(x->toexpr(x, st), args)...)
end
end
# Call elements of vector arguments by their name.
@matchable struct DestructuredArgs
elems
inds
name
inbounds::Bool
create_bindings::Bool
end
function DestructuredArgs(elems, name=nothing; inds=eachindex(elems), inbounds=false, create_bindings=true)
if name === nothing
# I'm sorry if you get a hash collision here lol
name = Symbol("##arg#", hash((elems, inds, inbounds, create_bindings)))
end
DestructuredArgs(elems, inds, name, inbounds, create_bindings)
end
"""
DestructuredArgs(elems, [name=gensym("arg")])
`elems` is a vector of symbols or call expressions. When it appears as an argument in
`Func`, it expects a vector of the same length and de-structures the vector into its named
components. See example in `Func` for more information.
`name` is the name to be used for the argument in the generated function Expr.
"""
DestructuredArgs
toexpr(x::DestructuredArgs, st) = toexpr(x.name, st)
get_rewrites(args::DestructuredArgs) = ()
function get_rewrites(args::Union{AbstractArray, Tuple})
cflatten(map(get_rewrites, args))
end
get_rewrites(x) = iscall(x) ? (x,) : ()
cflatten(x) = Iterators.flatten(x) |> collect
# Used in Symbolics
Base.@deprecate_binding get_symbolify get_rewrites
function get_assignments(d::DestructuredArgs, st)
name = toexpr(d, st)
map(d.inds, d.elems) do i, a
ex = (i isa Symbol ? :($name.$i) : :($name[$i]))
ex = d.inbounds && d.create_bindings ? :(@inbounds($ex)) : ex
a ← ex
end
end
@matchable struct Let
pairs::Vector{Union{Assignment,DestructuredArgs}} # an iterator of pairs, ordered
body
let_block::Bool
end
"""
Let(assignments, body[, let_block])
A Let block.
- `assignments` is a vector of `Assignment`s
- `body` is the body of the let block
- `let_block` boolean (default=true) -- do not create a let block if false.
"""
Let(assignments, body) = Let(assignments, body, true)
function toexpr(l::Let, st)
if all(x->x isa Assignment && !(x.lhs isa DestructuredArgs), l.pairs)
dargs = l.pairs
else
assignments = []
for x in l.pairs
if x isa DestructuredArgs
if x.create_bindings
append!(assignments, get_assignments(x, st))
else
for a in get_assignments(x, st)
st.rewrites[a.lhs] = a.rhs
end
end
elseif x isa Assignment && x.lhs isa DestructuredArgs
if x.lhs.create_bindings
push!(assignments, x.lhs.name ← x.rhs)
append!(assignments, get_assignments(x.lhs, st))
else
push!(assignments, x.lhs.name ← x.rhs)
for a in get_assignments(x.lhs, st)
st.rewrites[a.lhs] = a.rhs
end
end
else
push!(assignments, x)
end
end
# expand and come back
return toexpr(Let(assignments, l.body, l.let_block), st)
end
funkyargs = get_rewrites(map(lhs, dargs))
union_rewrites!(st.rewrites, funkyargs)
bindings = map(p->toexpr(p, st), dargs)
l.let_block ? Expr(:let,
Expr(:block, bindings...),
toexpr(l.body, st)) : Expr(:block,
bindings...,
toexpr(l.body, st))
end
@matchable struct Func
args::Vector
kwargs
body
pre::Vector
end
Func(args, kwargs, body) = Func(args, kwargs, body, [])
"""
Func(args, kwargs, body[, pre])
A function.
- `args` is a vector of expressions
- `kwargs` is a vector of `Assignment`s
- `body` is the body of the function
- `pre` a vector of expressions to be prepended to the function body,
for example, it could be `[Expr(:meta, :inline), Expr(:meta, :propagate_inbounds)]`
to create an `@inline @propagate_inbounds` function definition.
**Special features in `args`**:
- args can contain `DestructuredArgs`
- call expressions
For example,
```julia
julia> @syms a b c t f(d) x(t) y(t) z(t)
(a, b, c, t, f(::Number)::Number, x(::Number)::Number, y(::Number)::Number, z(::Number)::Number)
julia> func = Func([a,x(t), DestructuredArgs([b, y(t)]), f], # args
[c ← 2, z(t) ← 42], # kwargs
f((a + b + c) / x(t) + y(t) + z(t)));
julia> toexpr(func)
:(function (a, var"x(t)", var"##arg#255", f; c = 2, var"z(t)" = 42)
let b = var"##arg#255"[1], var"y(t)" = var"##arg#255"[2]
f((+)(var"y(t)", var"z(t)", (*)((+)(a, b, c), (inv)(var"x(t)"))))
end
end)
```
- the second argument is a `DestructuredArgs`, in the `Expr` form, it is given a random name, and is expected to receive a vector or tuple of size 2 containing the values of `b` and `y(t)`. The let block that is automatically generated "destructures" these arguments.
- `x(t)` and `y(t)` have been replaced with `var"x(t)"` and `var"y(t)"` symbols throughout
the generated Expr. This makes sure that we are not actually calling the expressions `x(t)` or `y(t)` but instead passing the right values in place of the whole expression.
- `f` is also a function-like symbol, same as `x` and `y`, but since the `args` array contains `f` as itself rather than as say, `f(t)`, it does not become a `var"f(t)"`. The generated function expects a function of one argument to be passed in the position of `f`.
An example invocation of this function is:
```julia
julia> executable = eval(toexpr(func))
#10 (generic function with 1 method)
julia> executable(1, 2.0, [2,3.0], x->string(x); var"z(t)" = sqrt(42))
"11.98074069840786"
```
"""
Func
toexpr_kw(f, st) = Expr(:kw, toexpr(f, st).args...)
function toexpr(f::Func, st)
funkyargs = get_rewrites(vcat(f.args, map(lhs, f.kwargs)))
union_rewrites!(st.rewrites, funkyargs)
dargs = filter(x->x isa DestructuredArgs, f.args)
if !isempty(dargs)
body = Let(dargs, f.body, false)
else
body = f.body
end
if isempty(f.kwargs)
:(function ($(map(x->toexpr(x, st), f.args)...),)
$(f.pre...)
$(toexpr(body, st))
end)
else
:(function ($(map(x->toexpr(x, st), f.args)...),;
$(map(x->toexpr_kw(x, st), f.kwargs)...))
$(f.pre...)
$(toexpr(body, st))
end)
end
end
@matchable struct SetArray
inbounds::Bool
arr
elems # Either iterator of Pairs or just an iterator
end
"""
SetArray(inbounds, arr, elems)
An expression representing setting of elements of `arr`.
By default, every element of `elems` is copied over to `arr`,
but if `elems` contains `AtIndex(i, val)` objects, then `arr[i] = val`
is performed in its place.
`inbounds` is a boolean flag, `true` surrounds the resulting expression
in an `@inbounds`.
"""
SetArray
@matchable struct AtIndex
i
elem
end
function toexpr(a::AtIndex, st)
toexpr(a.elem, st)
end
function toexpr(s::SetArray, st)
ex = quote
$([:($(toexpr(s.arr, st))[$(ex isa AtIndex ? ex.i : i)] = $(toexpr(ex, st)))
for (i, ex) in enumerate(s.elems)]...)
nothing
end
s.inbounds ? :(@inbounds $ex) : ex
end
@matchable struct MakeArray
elems
similarto # Must be either a reference to an array or a concrete type
output_eltype
end
"""
MakeArray(elems, similarto, [output_eltype=nothing])
An expression which constructs an array.
- `elems` is the output array
- `similarto` can either be a type, or some symbol that is an array whose type needs to
be emulated. If `similarto` is a StaticArrays.SArray, then the output array is also
created as an `SArray`, similarly, an `Array` will result in an `Array`, and a
`LabelledArrays.SLArray` will result in a labelled static array.
- `output_eltype`: if set, then forces the element type of the output array to be this.
by default, the output type is inferred automatically.
You can define:
```
@inline function create_array(A::Type{<:MyArray},a
::Nothing, d::Val{dims}, elems...) where dims
# and
@inline function create_array(::Type{<:MyArray}, T, ::Val{dims}, elems...) where dims
```
which creates an array of size `dims` using the elements `elems` and eltype `T`, to allow
`MakeArray` to create arrays similarto `MyArray`s.
"""
MakeArray
MakeArray(elems, similarto) = MakeArray(elems, similarto, nothing)
function toexpr(a::MakeArray, st)
similarto = toexpr(a.similarto, st)
T = similarto isa Type ? similarto : :(typeof($similarto))
ndim = ndims(a.elems)
elT = a.output_eltype
quote
$create_array($T,
$elT,
Val{$ndim}(),
Val{$(size(a.elems))}(),
$(map(x->toexpr(x, st), a.elems)...),)
end
end
## Array
@inline function _create_array(::Type{<:Array}, T, ::Val{dims}, elems...) where dims
arr = Array{T}(undef, dims)
@assert prod(dims) == nfields(elems)
@inbounds for i=1:prod(dims)
arr[i] = elems[i]
end
arr
end
@inline function create_array(A::Type{<:Array}, T, ::Val, d::Val, elems...)
_create_array(A, T, d, elems...)
end
@inline function create_array(A::Type{<:Array}, ::Nothing, ::Val, d::Val{dims}, elems...) where dims
T = promote_type(map(typeof, elems)...)
_create_array(A, T, d, elems...)
end
## Vector
#
@inline function create_array(::Type{<:Array}, ::Nothing, ::Val{1}, ::Val{dims}, elems...) where dims
[elems...]
end
@inline function create_array(::Type{<:Array}, T, ::Val{1}, ::Val{dims}, elems...) where dims
T[elems...]
end
## Matrix
@inline function create_array(::Type{<:Array}, ::Nothing, ::Val{2}, ::Val{dims}, elems...) where dims
vhcat(dims, elems...)
end
@inline function create_array(::Type{<:Array}, T, ::Val{2}, ::Val{dims}, elems...) where dims
typed_vhcat(T, dims, elems...)
end
vhcat(sz::Tuple{Int,Int}, xs::T...) where {T} = typed_vhcat(T, sz, xs...)
vhcat(sz::Tuple{Int,Int}, xs::Number...) = typed_vhcat(Base.promote_typeof(xs...), sz, xs...)
vhcat(sz::Tuple{Int,Int}, xs...) = typed_vhcat(Base.promote_eltypeof(xs...), sz, xs...)
function typed_vhcat(::Type{T}, sz::Tuple{Int, Int}, xs...) where T
nr,nc = sz
a = Matrix{T}(undef, nr, nc)
k = 1
for j=1:nc
@inbounds for i=1:nr
a[i, j] = xs[k]
k += 1
end
end
a
end
## Arrays of the special kind
@inline function create_array(A::Type{<:SubArray{T,N,P,I,L}}, S, nd::Val, d::Val, elems...) where {T,N,P,I,L}
create_array(P, S, nd, d, elems...)
end
@inline function create_array(A::Type{<:PermutedDimsArray{T,N,perm,iperm,P}}, S, nd::Val, d::Val, elems...) where {T,N,perm,iperm,P}
create_array(P, S, nd, d, elems...)
end
@inline function create_array(A::Type{<:Transpose{T,P}}, S, nd::Val, d::Val, elems...) where {T,P}
create_array(P, S, nd, d, elems...)
end
@inline function create_array(A::Type{<:UpperTriangular{T,P}}, S, nd::Val, d::Val, elems...) where {T,P}
create_array(P, S, nd, d, elems...)
end
## SArray
@inline function create_array(::Type{<:SArray}, ::Nothing, nd::Val, ::Val{dims}, elems...) where dims
SArray{Tuple{dims...}}(elems...)
end
@inline function create_array(::Type{<:SArray}, T, nd::Val, ::Val{dims}, elems...) where dims
SArray{Tuple{dims...}, T}(elems...)
end
## MArray
@inline function create_array(::Type{<:MArray}, ::Nothing, nd::Val, ::Val{dims}, elems...) where dims
MArray{Tuple{dims...}}(elems...)
end
@inline function create_array(::Type{<:MArray}, T, nd::Val, ::Val{dims}, elems...) where dims
MArray{Tuple{dims...}, T}(elems...)
end
## We use a separate type for Sparse Arrays to sidestep the need for
## iszero to be defined on the expression type
@matchable struct MakeSparseArray{S<:AbstractSparseArray}
array::S
end
"""
MakeSpaseArray(array)
An expression which creates a `SparseMatrixCSC` or a `SparseVector`.
The generated expression contains the sparsity information of `array`,
it only creates the `nzval` field at run time.
"""
MakeSparseArray
function toexpr(a::MakeSparseArray{<:SparseMatrixCSC}, st)
sp = a.array
:(SparseMatrixCSC($(sp.m), $(sp.n),
$(copy(sp.colptr)), $(copy(sp.rowval)),
[$(toexpr.(sp.nzval, (st,))...)]))
end
function toexpr(a::MakeSparseArray{<:SparseVector}, st)
sp = a.array
:(SparseVector($(sp.n),
$(copy(sp.nzind)),
[$(toexpr.(sp.nzval, (st,))...)]))
end
@matchable struct MakeTuple
elems
end
"""
MakeTuple(tup)
Make a Tuple from a tuple of expressions.
"""
MakeTuple
function toexpr(a::MakeTuple, st)
:(($(toexpr.(a.elems, (st,))...),))
end
struct Multithreaded end
"""
SpawnFetch{ParallelType}(funcs [, args], reduce)
Run every expression in `funcs` in its own task, the expression
should be a `Func` object and is passed to `Threads.Task(f)`.
If `Func` takes arguments, then the arguments must be passed in as `args`--a vector of vector of arguments to each function in `funcs`. We don't use `@spawn` in order to support RuntimeGeneratedFunctions which disallow closures, instead we interpolate these functions or closures as smaller RuntimeGeneratedFunctions.
`reduce` function is used to combine the results of executing `exprs`. A SpawnFetch expression returns the reduced result.
Use `Symbolics.MultithreadedForm` ParallelType from the Symbolics.jl package to get the RuntimeGeneratedFunction version SpawnFetch.
`ParallelType` can be used to define more parallelism types
SymbolicUtils supports `Multithreaded` type. Which spawns
threaded tasks.
"""
struct SpawnFetch{Typ}
exprs::Vector
args::Union{Nothing, Vector}
combine
end
(::Type{SpawnFetch{T}})(exprs, combine) where {T} = SpawnFetch{T}(exprs, nothing, combine)
function toexpr(p::SpawnFetch{Multithreaded}, st)
args = p.args === nothing ? Iterators.repeated((), length(p.exprs)) : p.args
spawns = map(p.exprs, args) do thunk, xs
:(Base.Threads.@spawn $(toexpr(thunk, st))($(toexpr.(xs, (st,))...)))
end
quote
$(toexpr(p.combine, st))(map(fetch, ($(spawns...),))...)
end
end
"""
LiteralExpr(ex)
Literally `ex`, an `Expr`. `toexpr` on `LiteralExpr` recursively calls
`toexpr` on any interpolated symbolic expressions.
"""
struct LiteralExpr
ex
end
recurse_expr(ex::Expr, st) = Expr(ex.head, recurse_expr.(ex.args, (st,))...)
recurse_expr(ex, st) = toexpr(ex, st)
function toexpr(exp::LiteralExpr, st)
recurse_expr(exp.ex, st)
end
### Code-related utilities
### Common subexprssion evaluation
@inline newsym(::Type{T}) where T = Sym{T}(gensym("cse"))
function _cse!(mem, expr)
iscall(expr) || return expr
op = _cse!(mem, operation(expr))
args = map(Base.Fix1(_cse!, mem), arguments(expr))
t = maketerm(typeof(expr), op, args, nothing)
v, dict = mem
update! = let v=v, t=t
() -> begin
var = newsym(symtype(t))
push!(v, var ← t)
length(v)
end
end
v[get!(update!, dict, t)].lhs
end
function cse(expr)
state = Dict{Any, Int}()
cse_state!(state, expr)
cse_block(state, expr)
end
function _cse(exprs::AbstractArray)
letblock = cse(Term{Any}(tuple, vec(exprs)))
letblock.pairs, reshape(arguments(letblock.body), size(exprs))
end
function cse(x::MakeArray)
assigns, expr = _cse(x.elems)
Let(assigns, MakeArray(expr, x.similarto, x.output_eltype))
end
function cse(x::SetArray)
assigns, expr = _cse(x.elems)
Let(assigns, SetArray(x.inbounds, x.arr, expr))
end
function cse(x::MakeSparseArray)
sp = x.array
assigns, expr = _cse(sp.nzval)
if sp isa SparseMatrixCSC
Let(assigns, MakeSparseArray(SparseMatrixCSC(sp.m, sp.n,
sp.colptr, sp.rowval, exprs)))
else
Let(assigns, MakeSparseArray(SparseVector(sp.n, sp.nzinds, exprs)))
end
end
function cse_state!(state, t)
!iscall(t) && return t
state[t] = Base.get(state, t, 0) + 1
foreach(x->cse_state!(state, x), arguments(t))
end
function cse_block!(assignments, counter, names, name, state, x)
if get(state, x, 0) > 1
if haskey(names, x)
return names[x]
else
sym = Sym{symtype(x)}(Symbol(name, counter[]))
names[x] = sym
push!(assignments, sym ← x)
counter[] += 1
return sym
end
elseif iscall(x)
args = map(a->cse_block!(assignments, counter, names, name, state,a), arguments(x))
if isterm(x)
return term(operation(x), args...)
else
return maketerm(typeof(x), operation(x), args, metadata(x))
end
else
return x
end
end
function cse_block(state, t, name=Symbol("var-", hash(t)))
assignments = Assignment[]
counter = Ref{Int}(1)
names = Dict{Any, BasicSymbolic}()
Let(assignments, cse_block!(assignments, counter, names, name, state, t))
end
end