-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathmodel.py
170 lines (147 loc) · 6.76 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.parameter import Parameter
from torch.nn.init import xavier_normal
class SubNet(nn.Module):
'''
The subnetwork that is used in LMF for video and audio in the pre-fusion stage
'''
def __init__(self, in_size, hidden_size, dropout):
'''
Args:
in_size: input dimension
hidden_size: hidden layer dimension
dropout: dropout probability
Output:
(return value in forward) a tensor of shape (batch_size, hidden_size)
'''
super(SubNet, self).__init__()
self.norm = nn.BatchNorm1d(in_size)
self.drop = nn.Dropout(p=dropout)
self.linear_1 = nn.Linear(in_size, hidden_size)
self.linear_2 = nn.Linear(hidden_size, hidden_size)
self.linear_3 = nn.Linear(hidden_size, hidden_size)
def forward(self, x):
'''
Args:
x: tensor of shape (batch_size, in_size)
'''
normed = self.norm(x)
dropped = self.drop(normed)
y_1 = F.relu(self.linear_1(dropped))
y_2 = F.relu(self.linear_2(y_1))
y_3 = F.relu(self.linear_3(y_2))
return y_3
class TextSubNet(nn.Module):
'''
The LSTM-based subnetwork that is used in LMF for text
'''
def __init__(self, in_size, hidden_size, out_size, num_layers=1, dropout=0.2, bidirectional=False):
'''
Args:
in_size: input dimension
hidden_size: hidden layer dimension
num_layers: specify the number of layers of LSTMs.
dropout: dropout probability
bidirectional: specify usage of bidirectional LSTM
Output:
(return value in forward) a tensor of shape (batch_size, out_size)
'''
super(TextSubNet, self).__init__()
self.rnn = nn.LSTM(in_size, hidden_size, num_layers=num_layers, dropout=dropout, bidirectional=bidirectional, batch_first=True)
self.dropout = nn.Dropout(dropout)
self.linear_1 = nn.Linear(hidden_size, out_size)
def forward(self, x):
'''
Args:
x: tensor of shape (batch_size, sequence_len, in_size)
'''
_, final_states = self.rnn(x)
h = self.dropout(final_states[0].squeeze())
y_1 = self.linear_1(h)
return y_1
class LMF(nn.Module):
'''
Low-rank Multimodal Fusion
'''
def __init__(self, input_dims, hidden_dims, text_out, dropouts, output_dim, rank, use_softmax=False):
'''
Args:
input_dims - a length-3 tuple, contains (audio_dim, video_dim, text_dim)
hidden_dims - another length-3 tuple, hidden dims of the sub-networks
text_out - int, specifying the resulting dimensions of the text subnetwork
dropouts - a length-4 tuple, contains (audio_dropout, video_dropout, text_dropout, post_fusion_dropout)
output_dim - int, specifying the size of output
rank - int, specifying the size of rank in LMF
Output:
(return value in forward) a scalar value between -3 and 3
'''
super(LMF, self).__init__()
# dimensions are specified in the order of audio, video and text
self.audio_in = input_dims[0]
self.video_in = input_dims[1]
self.text_in = input_dims[2]
self.audio_hidden = hidden_dims[0]
self.video_hidden = hidden_dims[1]
self.text_hidden = hidden_dims[2]
self.text_out= text_out
self.output_dim = output_dim
self.rank = rank
self.use_softmax = use_softmax
self.audio_prob = dropouts[0]
self.video_prob = dropouts[1]
self.text_prob = dropouts[2]
self.post_fusion_prob = dropouts[3]
# define the pre-fusion subnetworks
self.audio_subnet = SubNet(self.audio_in, self.audio_hidden, self.audio_prob)
self.video_subnet = SubNet(self.video_in, self.video_hidden, self.video_prob)
self.text_subnet = TextSubNet(self.text_in, self.text_hidden, self.text_out, dropout=self.text_prob)
# define the post_fusion layers
self.post_fusion_dropout = nn.Dropout(p=self.post_fusion_prob)
# self.post_fusion_layer_1 = nn.Linear((self.text_out + 1) * (self.video_hidden + 1) * (self.audio_hidden + 1), self.post_fusion_dim)
self.audio_factor = Parameter(torch.Tensor(self.rank, self.audio_hidden + 1, self.output_dim))
self.video_factor = Parameter(torch.Tensor(self.rank, self.video_hidden + 1, self.output_dim))
self.text_factor = Parameter(torch.Tensor(self.rank, self.text_out + 1, self.output_dim))
self.fusion_weights = Parameter(torch.Tensor(1, self.rank))
self.fusion_bias = Parameter(torch.Tensor(1, self.output_dim))
# init teh factors
xavier_normal(self.audio_factor)
xavier_normal(self.video_factor)
xavier_normal(self.text_factor)
xavier_normal(self.fusion_weights)
self.fusion_bias.data.fill_(0)
def forward(self, audio_x, video_x, text_x):
'''
Args:
audio_x: tensor of shape (batch_size, audio_in)
video_x: tensor of shape (batch_size, video_in)
text_x: tensor of shape (batch_size, sequence_len, text_in)
'''
audio_h = self.audio_subnet(audio_x)
video_h = self.video_subnet(video_x)
text_h = self.text_subnet(text_x)
batch_size = audio_h.data.shape[0]
# next we perform low-rank multimodal fusion
# here is a more efficient implementation than the one the paper describes
# basically swapping the order of summation and elementwise product
if audio_h.is_cuda:
DTYPE = torch.cuda.FloatTensor
else:
DTYPE = torch.FloatTensor
_audio_h = torch.cat((Variable(torch.ones(batch_size, 1).type(DTYPE), requires_grad=False), audio_h), dim=1)
_video_h = torch.cat((Variable(torch.ones(batch_size, 1).type(DTYPE), requires_grad=False), video_h), dim=1)
_text_h = torch.cat((Variable(torch.ones(batch_size, 1).type(DTYPE), requires_grad=False), text_h), dim=1)
fusion_audio = torch.matmul(_audio_h, self.audio_factor)
fusion_video = torch.matmul(_video_h, self.video_factor)
fusion_text = torch.matmul(_text_h, self.text_factor)
fusion_zy = fusion_audio * fusion_video * fusion_text
# output = torch.sum(fusion_zy, dim=0).squeeze()
# use linear transformation instead of simple summation, more flexibility
output = torch.matmul(self.fusion_weights, fusion_zy.permute(1, 0, 2)).squeeze() + self.fusion_bias
output = output.view(-1, self.output_dim)
if self.use_softmax:
output = F.softmax(output)
return output