-
Notifications
You must be signed in to change notification settings - Fork 3
/
combine.py
110 lines (92 loc) · 3.47 KB
/
combine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
import os
import cv2
import numpy as np
from PIL import Image
from utils.util import read_yaml_config
def main():
parser = argparse.ArgumentParser("Combined transferred images")
parser.add_argument(
"-c",
"--config",
type=str,
default="./config.yaml",
help="Path to the config file.",
)
parser.add_argument(
"--patch_size", type=int, help="Patch size", default=512
)
parser.add_argument(
"--resize_h", type=int, help="Resize H", default=-1
)
parser.add_argument(
"--resize_w", type=int, help="Resize W", default=-1
)
args = parser.parse_args()
config = read_yaml_config(args.config)
basename = os.path.basename(config["INFERENCE_SETTING"]["TEST_X"])
filename = os.path.splitext(basename)[0]
path_root = os.path.join(
config["EXPERIMENT_ROOT_PATH"],
config["EXPERIMENT_NAME"],
"test",
filename,
)
if (
"OVERWRITE_OUTPUT_PATH" in config["INFERENCE_SETTING"]
and config["INFERENCE_SETTING"]["OVERWRITE_OUTPUT_PATH"] != ""
):
path_root = config["INFERENCE_SETTING"]["OVERWRITE_OUTPUT_PATH"]
path_base = os.path.join(
path_root,
config["INFERENCE_SETTING"]["NORMALIZATION"]["TYPE"],
config["INFERENCE_SETTING"]["MODEL_VERSION"],
)
combined_image_name = f"combined_" \
f"{config['INFERENCE_SETTING']['NORMALIZATION']['TYPE']}_" \
f"{config['INFERENCE_SETTING']['MODEL_VERSION']}.png"
if config["INFERENCE_SETTING"]["NORMALIZATION"]["TYPE"] == "kin":
path_base = os.path.join(
path_base,
f"{config['INFERENCE_SETTING']['NORMALIZATION']['KERNEL_TYPE']}"
f"_{config['INFERENCE_SETTING']['NORMALIZATION']['PADDING']}",
)
combined_image_name = f"combined_" \
f"{config['INFERENCE_SETTING']['NORMALIZATION']['TYPE']}" \
f"_{config['INFERENCE_SETTING']['MODEL_VERSION']}_" \
f"{config['INFERENCE_SETTING']['NORMALIZATION']['KERNEL_TYPE']}_" \
f"{config['INFERENCE_SETTING']['NORMALIZATION']['PADDING']}.png"
filenames = os.listdir(path_base)
try:
filenames.remove("thumbnail_Y_fake.png")
except Exception:
pass
y_anchor_max = 0
x_anchor_max = 0
for filename in filenames:
try:
_, _, y_anchor, x_anchor, _ = filename.split("_", 4)
except Exception as e:
raise ValueError(f"{filename} is not valid") from e
y_anchor_max = max(y_anchor_max, int(y_anchor))
x_anchor_max = max(x_anchor_max, int(x_anchor))
matrix = np.zeros(
(y_anchor_max + args.patch_size, x_anchor_max + args.patch_size, 3),
dtype=np.uint8,
)
for filename in sorted(filenames):
print(f"Combine {filename} ", end="\r")
_, _, y_anchor, x_anchor, _ = filename.split("_", 4)
y_anchor = int(y_anchor)
x_anchor = int(x_anchor)
image = cv2.imread(os.path.join(path_base, filename))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
matrix[y_anchor:y_anchor + 512, x_anchor:x_anchor + 512, :] = image
if (args.resize_h != -1) and (args.resize_w != -1):
matrix = cv2.resize(
matrix, (args.resize_w, args.resize_h), cv2.INTER_CUBIC
)
matrix_image = Image.fromarray(matrix)
matrix_image.save(os.path.join(path_root, combined_image_name))
if __name__ == "__main__":
main()