-
Notifications
You must be signed in to change notification settings - Fork 210
/
Copy path19bb65fb-f903-4a41-803b-fbd57562f653.txt
2165 lines (2092 loc) · 134 KB
/
19bb65fb-f903-4a41-803b-fbd57562f653.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
with open(sys.argv[0]) as f:
code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
import contextlib
from dataclasses import dataclass
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
# Use of FlexAttention contributed by @KoszarskyB
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
flex_attention = torch.compile(flex_attention, dynamic=False)
create_block_mask = torch.compile(create_block_mask, dynamic=False)
# -----------------------------------------------------------------------------
# Muon optimizer
def zeropower_via_svd(G, steps=None):
U, S, V = G.svd()
return U @ V.T
@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
"""
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
zero even beyond the point where the iteration no longer converges all the way to one everywhere
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
performance at all relative to UV^T, where USV^T = G is the SVD.
"""
assert len(G.shape) == 2
a, b, c = (3.4445, -4.7750, 2.0315)
X = G.bfloat16()
X /= (X.norm() + eps) # ensure top singular value <= 1
if G.size(0) > G.size(1):
X = X.T
for _ in range(steps):
A = X @ X.T
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
X = a * X + B @ X
if G.size(0) > G.size(1):
X = X.T
return X
zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)
class Muon(torch.optim.Optimizer):
"""
Muon - MomentUm Orthogonalized by Newton-schulz
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
the advantage that it can be stably run in bfloat16 on the GPU.
Some warnings:
- This optimizer assumes that all parameters passed in are 2D.
- It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
parameters; those should all be optimized by a standard method (e.g., AdamW).
- To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
- We believe it is unlikely to work well for training with small batch size.
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
- We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).
Arguments:
lr: The learning rate used by the internal SGD.
momentum: The momentum used by the internal SGD.
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
backend_steps: The number of iteration steps to use in the backend, if it is iterative.
"""
def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True,
backend='newtonschulz5', backend_steps=5):
defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
super().__init__(params, defaults)
def step(self):
for group in self.param_groups:
lr = group['lr']
momentum = group['momentum']
zeropower_backend = zeropower_backends[group['backend']]
# generate weight updates in distributed fashion
total_params = sum(p.numel() for p in group['params'])
updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16)
curr_idx = 0
for i, p in enumerate(group['params']):
# luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs
if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']):
g = p.grad
assert g is not None
state = self.state[p]
if 'momentum_buffer' not in state:
state['momentum_buffer'] = torch.zeros_like(g)
buf = state['momentum_buffer']
buf.mul_(momentum).add_(g)
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
g = zeropower_backend(g, steps=group['backend_steps'])
g *= max(1, g.size(0)/g.size(1))**0.5
updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten()
curr_idx += p.numel()
# sync updates across devices. we are not memory-constrained so can do this simple deserialization
dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM)
# deserialize and apply updates
curr_idx = 0
for p in group['params']:
g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data)
p.data.add_(g, alpha=-lr)
curr_idx += p.numel()
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
def norm(x):
return F.rms_norm(x, (x.size(-1),))
class CastedLinear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features, bias=False)
def forward(self, x):
return F.linear(x, self.weight.to(x.dtype))
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim))
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x):
seq_len = x.shape[1]
if seq_len != self.seq_len_cached:
t = torch.arange(seq_len, device=x.device)
freqs = torch.outer(t, self.inv_freq)
self.seq_len_cached = seq_len
self.cos_cached = freqs.cos()
self.sin_cached = freqs.sin()
cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
# apply_rotary_emb(x, cos, sin)
x1, x2 = x.chunk(2, dim=3)
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
return torch.cat((y1, y2), 3).type_as(x)
class CausalSelfAttention(nn.Module):
def __init__(self, dim, n_head):
super().__init__()
assert dim % n_head == 0
self.n_head = n_head
self.c_q = CastedLinear(dim, dim)
self.c_k = CastedLinear(dim, dim)
self.c_v = CastedLinear(dim, dim)
# value residual lambda
self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977
# rotary embeddings
self.rotary = Rotary(dim // n_head) # dim // n_head = head_dim
# output projection
self.c_proj = CastedLinear(dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x, vi, block_mask):
B, T = x.size(0), x.size(1) # batch size, sequence length
assert B == 1, "Must use batch size = 1 for FlexAttention"
q = self.c_q(x).view(B, T, self.n_head, -1)
k = self.c_k(x).view(B, T, self.n_head, -1)
v = self.c_v(x).view(B, T, self.n_head, -1)
v = (1 - self.lamb) * v + self.lamb * vi.view_as(v) # @Grad62304977
q, k = norm(q), norm(k) # QK norm suggested by @Grad62304977
q, k = self.rotary(q), self.rotary(k)
y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask)
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, dim):
super().__init__()
self.c_fc = CastedLinear(dim, 4 * dim)
self.c_proj = CastedLinear(4 * dim, dim)
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
def forward(self, x):
x = self.c_fc(x)
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.attn = CausalSelfAttention(config.n_embd, config.n_head)
self.mlp = MLP(config.n_embd)
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
def forward(self, x, vi, x0, block_mask):
x = self.lambdas[0] * x + self.lambdas[1] * x0
x = x + self.attn(norm(x), vi, block_mask)
x = x + self.mlp(norm(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
vocab_size : int = 50304
n_layer : int = 12
n_head : int = 6 # head dim 128 suggested by @Grad62304977
n_embd : int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
# U-net design by @brendanh0gan
self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder
self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder
# Add learnable skip connection weights for decoder layers
self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers))
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
# token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning
vte = nn.Embedding(config.vocab_size, config.n_embd*12),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
))
self.lm_head = CastedLinear(config.n_embd, config.vocab_size)
self.lm_head.weight.data.zero_() # @Grad62304977
def forward(self, idx, target, attn_blocksize):
docs = (idx == 50256).cumsum(0)
def document_causal_mask(b, h, q_idx, kv_idx):
causal_mask = q_idx >= kv_idx
document_mask = docs[q_idx] == docs[kv_idx]
window_mask = q_idx - kv_idx < attn_blocksize
return causal_mask & document_mask & window_mask
S = len(idx)
block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True)
# forward the GPT model itself
x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd)
x = norm(x) # @Grad62304977
x0 = x
vi = self.transformer.vte(idx[None]).chunk(12, dim=-1)
# Store outputs for U-Net skip connections
skip_connections = []
# Encoder pass - process only the first half of the blocks
for i in range(self.num_encoder_layers):
x = self.transformer.h[i](x, vi[i], x0, block_mask)
skip_connections.append(x)
# Decoder pass - process the remaining blocks with weighted skip connections
for i in range(self.num_decoder_layers):
x = x + self.skip_weights[i] * skip_connections.pop()
x = self.transformer.h[self.num_encoder_layers + i](x, vi[self.num_encoder_layers+i], x0, block_mask)
x = norm(x)
logits = self.lm_head(x)
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1))
return loss
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * T + 1
ntok_total += int(shard_ntok)
self.ntok_total = ntok_total
self.reset()
def reset(self):
self.current_shard = -1
self.advance()
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
batch_size = self.T * self.num_processes
buf = self.tokens[self.current_position:self.current_position+self.T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = buf[:-1] # inputs
y = buf[1:] # targets
# advance current position and load next shard if necessary
self.current_position += batch_size
if self.current_position + batch_size >= len(self.tokens):
self.advance()
return x.cuda(), y.cuda()
# -----------------------------------------------------------------------------
# int main
@dataclass
class Hyperparameters:
# data hyperparams
input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
# optimization hyperparams
batch_size : int = 8 # batch size, in sequences, across all devices
sequence_length : int = 64*1024 # sequence length, in tokens
num_iterations : int = 1530 # number of iterations to run
warmup_iters : int = 0
cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule
weight_decay : float = 0
# evaluation and logging hyperparams
val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()
# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.
# begin logging
logfile = None
if master_process:
run_id = str(uuid.uuid4())
logdir = 'logs/%s/' % run_id
os.makedirs(logdir, exist_ok=True)
logfile = 'logs/%s.txt' % run_id
# create the log file
with open(logfile, "w") as f:
# begin the log by printing this file (the Python code)
f.write(code)
f.write('='*100 + '\n')
def print0(s, logonly=False):
if master_process:
with open(logfile, "a") as f:
if not logonly:
print(s)
f.write(s+'\n')
# log information about the hardware/software environment this is running on
# and print the full `nvidia-smi` to file
print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:")
import subprocess
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
print0(f'{result.stdout}', logonly=True)
print0('='*100, logonly=True)
# convenience variables
T = args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (T * ddp_world_size) == 0
val_steps = args.val_tokens // (T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (ddp_world_size) == 0
train_accumulation_steps = args.batch_size // ddp_world_size
# load tokens
train_loader = DistributedDataLoader(args.input_bin, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, T, ddp_rank, ddp_world_size)
print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
print0('='*100, logonly=True)
x, y = train_loader.next_batch()
# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda().bfloat16()
for m in model.modules():
if isinstance(m, CastedLinear):
m.float()
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
# init the optimizer(s)
optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight, raw_model.transformer.vte.weight], lr=0.6, betas=(0.8, 0.95), fused=True)
optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True)
params = list(raw_model.transformer.h.parameters())
matrix_params = [p for p in params if p.ndim == 2]
scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights]
optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95)
optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
# learning rate decay scheduler (linear warmup and cooldown)
def get_lr(it):
assert it <= args.num_iterations
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return (it+1) / args.warmup_iters
# 2) constant lr for a while
elif it < args.num_iterations - args.cooldown_iters:
return 1.0
# 3) linear cooldown
else:
decay_ratio = (args.num_iterations - it) / args.cooldown_iters
return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]
# Start training loop
training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
for step in range(args.num_iterations + 1):
last_step = (step == args.num_iterations)
# This effectively ignores timing first 10 steps, which are slower for weird reasons.
# Alternately, and slightly more correctly in terms of benchmarking, we could do 10
# steps with dummy data first, and then re-initialize the model and reset the loader.
if step == 10:
training_time_ms = 0
t0 = time.time()
timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val
# Set the attention blocksize for the current step, in chunks of 64. By @fernbear.bsky.social
attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda')
# once in a while evaluate the validation dataset
if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# run validation batches
model.eval()
val_loader.reset()
val_loss = 0.0
for _ in range(val_steps):
with torch.no_grad():
x_val, y_val = val_loader.next_batch()
val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize)
dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
val_loss /= val_steps
# log val loss to console and to logfile
print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
# stop the clock
torch.cuda.synchronize()
training_time_ms += 1000 * (time.time() - t0)
# save the state of the training process
log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
# start the clock again
torch.cuda.synchronize()
t0 = time.time()
# bit confusing: we want to make sure to eval on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
for i in range(1, train_accumulation_steps+1):
ctx = model.no_sync() if i < train_accumulation_steps else contextlib.nullcontext()
with ctx: # there's no need to sync gradients every accumulation step
# forward pass
loss = model(x, y, attn_blocksize=attn_blocksize)
# advance the dataset for the next batch
x, y = train_loader.next_batch()
# backward pass
loss.backward()
train_loss = loss.detach()
for p in model.parameters():
p.grad /= train_accumulation_steps
# momentum warmup for Muon
frac = min(step/300, 1)
optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95
# step the optimizers and schedulers
for opt, sched in zip(optimizers, schedulers):
opt.step()
sched.step()
# null the gradients
model.zero_grad(set_to_none=True)
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
#dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
approx_time = training_time_ms + 1000 * (time.time() - t0)
print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
if master_process:
print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()
====================================================================================================
Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4
nvidia-smi:
Thu Dec 5 02:07:01 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 |
| N/A 38C P0 75W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 |
| N/A 30C P0 115W / 700W | 529MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 |
| N/A 31C P0 111W / 700W | 29MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 |
| N/A 38C P0 118W / 700W | 41MiB / 81559MiB | 1% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 |
| N/A 38C P0 77W / 700W | 3MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 |
| N/A 29C P0 110W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 |
| N/A 38C P0 100W / 700W | 22MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 |
| N/A 30C P0 118W / 700W | 529MiB / 81559MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
+---------------------------------------------------------------------------------------+
====================================================================================================
Training DataLoader: total number of tokens: 1100000000 across 11 files
Validation DataLoader: total number of tokens: 100000000 across 1 files
====================================================================================================
step:0/1530 val_loss:10.8258 train_time:0ms step_avg:nanms
step:1/1530 train_loss:10.8258 train_time:31958ms step_avg:nanms
step:2/1530 train_loss:10.0719 train_time:32069ms step_avg:nanms
step:3/1530 train_loss:8.3862 train_time:32230ms step_avg:nanms
step:4/1530 train_loss:7.6004 train_time:32391ms step_avg:nanms
step:5/1530 train_loss:7.4522 train_time:32552ms step_avg:nanms
step:6/1530 train_loss:6.9553 train_time:32713ms step_avg:nanms
step:7/1530 train_loss:7.2008 train_time:32873ms step_avg:nanms
step:8/1530 train_loss:6.7183 train_time:33033ms step_avg:nanms
step:9/1530 train_loss:6.6113 train_time:33194ms step_avg:nanms
step:10/1530 train_loss:6.5029 train_time:33355ms step_avg:nanms
step:11/1530 train_loss:6.4825 train_time:114ms step_avg:nanms
step:12/1530 train_loss:6.3382 train_time:275ms step_avg:nanms
step:13/1530 train_loss:6.2724 train_time:436ms step_avg:145.29ms
step:14/1530 train_loss:6.2197 train_time:596ms step_avg:149.12ms
step:15/1530 train_loss:6.1726 train_time:757ms step_avg:151.32ms
step:16/1530 train_loss:6.1025 train_time:917ms step_avg:152.77ms
step:17/1530 train_loss:6.1666 train_time:1077ms step_avg:153.86ms
step:18/1530 train_loss:5.9483 train_time:1238ms step_avg:154.74ms
step:19/1530 train_loss:5.9986 train_time:1398ms step_avg:155.36ms
step:20/1530 train_loss:5.6808 train_time:1557ms step_avg:155.75ms
step:21/1530 train_loss:5.9601 train_time:1718ms step_avg:156.18ms
step:22/1530 train_loss:6.2090 train_time:1879ms step_avg:156.55ms
step:23/1530 train_loss:5.8614 train_time:2038ms step_avg:156.77ms
step:24/1530 train_loss:6.0173 train_time:2199ms step_avg:157.09ms
step:25/1530 train_loss:5.6922 train_time:2360ms step_avg:157.35ms
step:26/1530 train_loss:5.5961 train_time:2519ms step_avg:157.44ms
step:27/1530 train_loss:5.8057 train_time:2680ms step_avg:157.63ms
step:28/1530 train_loss:5.4050 train_time:2840ms step_avg:157.76ms
step:29/1530 train_loss:5.6725 train_time:3000ms step_avg:157.91ms
step:30/1530 train_loss:5.4720 train_time:3160ms step_avg:157.98ms
step:31/1530 train_loss:5.4452 train_time:3320ms step_avg:158.12ms
step:32/1530 train_loss:5.2744 train_time:3480ms step_avg:158.19ms
step:33/1530 train_loss:5.5767 train_time:3639ms step_avg:158.23ms
step:34/1530 train_loss:5.5153 train_time:3800ms step_avg:158.33ms
step:35/1530 train_loss:5.6403 train_time:3960ms step_avg:158.39ms
step:36/1530 train_loss:5.5432 train_time:4120ms step_avg:158.46ms
step:37/1530 train_loss:5.4560 train_time:4280ms step_avg:158.50ms
step:38/1530 train_loss:5.3083 train_time:4440ms step_avg:158.57ms
step:39/1530 train_loss:5.3344 train_time:4600ms step_avg:158.63ms
step:40/1530 train_loss:5.2415 train_time:4760ms step_avg:158.66ms
step:41/1530 train_loss:5.2357 train_time:4922ms step_avg:158.77ms
step:42/1530 train_loss:5.1750 train_time:5082ms step_avg:158.83ms
step:43/1530 train_loss:5.2674 train_time:5243ms step_avg:158.87ms
step:44/1530 train_loss:5.2206 train_time:5403ms step_avg:158.92ms
step:45/1530 train_loss:5.3807 train_time:5564ms step_avg:158.97ms
step:46/1530 train_loss:5.1643 train_time:5725ms step_avg:159.03ms
step:47/1530 train_loss:5.0613 train_time:5886ms step_avg:159.09ms
step:48/1530 train_loss:5.2034 train_time:6047ms step_avg:159.13ms
step:49/1530 train_loss:5.1453 train_time:6207ms step_avg:159.16ms
step:50/1530 train_loss:5.2443 train_time:6367ms step_avg:159.16ms
step:51/1530 train_loss:5.1388 train_time:6528ms step_avg:159.22ms
step:52/1530 train_loss:5.0167 train_time:6688ms step_avg:159.24ms
step:53/1530 train_loss:5.1654 train_time:6848ms step_avg:159.27ms
step:54/1530 train_loss:5.0108 train_time:7009ms step_avg:159.30ms
step:55/1530 train_loss:5.4072 train_time:7169ms step_avg:159.30ms
step:56/1530 train_loss:5.0101 train_time:7330ms step_avg:159.35ms
step:57/1530 train_loss:4.8682 train_time:7490ms step_avg:159.36ms
step:58/1530 train_loss:5.0317 train_time:7650ms step_avg:159.38ms
step:59/1530 train_loss:5.0253 train_time:7812ms step_avg:159.43ms
step:60/1530 train_loss:5.1312 train_time:7972ms step_avg:159.44ms
step:61/1530 train_loss:4.8548 train_time:8132ms step_avg:159.46ms
step:62/1530 train_loss:5.0032 train_time:8293ms step_avg:159.48ms
step:63/1530 train_loss:5.0139 train_time:8453ms step_avg:159.50ms
step:64/1530 train_loss:4.9369 train_time:8614ms step_avg:159.52ms
step:65/1530 train_loss:4.7871 train_time:8775ms step_avg:159.54ms
step:66/1530 train_loss:4.9278 train_time:8935ms step_avg:159.56ms
step:67/1530 train_loss:4.8092 train_time:9096ms step_avg:159.58ms
step:68/1530 train_loss:5.0825 train_time:9258ms step_avg:159.61ms
step:69/1530 train_loss:4.7126 train_time:9418ms step_avg:159.63ms
step:70/1530 train_loss:4.8402 train_time:9578ms step_avg:159.63ms
step:71/1530 train_loss:4.9522 train_time:9737ms step_avg:159.63ms
step:72/1530 train_loss:4.8736 train_time:9899ms step_avg:159.67ms
step:73/1530 train_loss:4.7416 train_time:10061ms step_avg:159.69ms
step:74/1530 train_loss:4.9203 train_time:10221ms step_avg:159.71ms
step:75/1530 train_loss:4.8673 train_time:10382ms step_avg:159.72ms
step:76/1530 train_loss:4.7859 train_time:10542ms step_avg:159.73ms
step:77/1530 train_loss:4.9104 train_time:10703ms step_avg:159.74ms
step:78/1530 train_loss:5.1344 train_time:10862ms step_avg:159.73ms
step:79/1530 train_loss:4.8105 train_time:11023ms step_avg:159.76ms
step:80/1530 train_loss:4.8464 train_time:11185ms step_avg:159.79ms
step:81/1530 train_loss:4.6487 train_time:11346ms step_avg:159.80ms
step:82/1530 train_loss:4.8121 train_time:11506ms step_avg:159.81ms
step:83/1530 train_loss:4.7615 train_time:11666ms step_avg:159.81ms
step:84/1530 train_loss:4.7646 train_time:11827ms step_avg:159.83ms
step:85/1530 train_loss:4.6268 train_time:11988ms step_avg:159.84ms
step:86/1530 train_loss:4.8232 train_time:12148ms step_avg:159.84ms
step:87/1530 train_loss:4.7274 train_time:12308ms step_avg:159.85ms
step:88/1530 train_loss:4.7353 train_time:12468ms step_avg:159.84ms
step:89/1530 train_loss:4.6920 train_time:12629ms step_avg:159.86ms
step:90/1530 train_loss:4.6202 train_time:12790ms step_avg:159.88ms
step:91/1530 train_loss:4.6209 train_time:12951ms step_avg:159.89ms
step:92/1530 train_loss:4.7902 train_time:13112ms step_avg:159.90ms
step:93/1530 train_loss:4.5984 train_time:13272ms step_avg:159.90ms
step:94/1530 train_loss:4.6135 train_time:13432ms step_avg:159.90ms
step:95/1530 train_loss:4.6607 train_time:13592ms step_avg:159.91ms
step:96/1530 train_loss:4.5724 train_time:13754ms step_avg:159.93ms
step:97/1530 train_loss:4.6263 train_time:13915ms step_avg:159.94ms
step:98/1530 train_loss:4.5657 train_time:14074ms step_avg:159.93ms
step:99/1530 train_loss:4.6346 train_time:14235ms step_avg:159.94ms
step:100/1530 train_loss:4.6644 train_time:14397ms step_avg:159.97ms
step:101/1530 train_loss:4.5358 train_time:14557ms step_avg:159.97ms
step:102/1530 train_loss:4.6902 train_time:14719ms step_avg:159.99ms
step:103/1530 train_loss:4.5639 train_time:14879ms step_avg:159.99ms
step:104/1530 train_loss:4.5146 train_time:15040ms step_avg:159.99ms
step:105/1530 train_loss:4.5357 train_time:15198ms step_avg:159.98ms
step:106/1530 train_loss:4.5827 train_time:15359ms step_avg:159.99ms
step:107/1530 train_loss:4.4813 train_time:15520ms step_avg:160.00ms
step:108/1530 train_loss:4.3379 train_time:15680ms step_avg:160.00ms
step:109/1530 train_loss:4.4633 train_time:15840ms step_avg:160.00ms
step:110/1530 train_loss:4.4678 train_time:16000ms step_avg:160.00ms
step:111/1530 train_loss:4.4122 train_time:16160ms step_avg:160.00ms
step:112/1530 train_loss:4.5739 train_time:16320ms step_avg:160.00ms
step:113/1530 train_loss:4.4803 train_time:16481ms step_avg:160.01ms
step:114/1530 train_loss:4.3518 train_time:16641ms step_avg:160.01ms
step:115/1530 train_loss:4.5032 train_time:16803ms step_avg:160.03ms
step:116/1530 train_loss:4.4616 train_time:16967ms step_avg:160.07ms
step:117/1530 train_loss:4.3593 train_time:17131ms step_avg:160.10ms
step:118/1530 train_loss:4.5906 train_time:17294ms step_avg:160.13ms
step:119/1530 train_loss:4.4486 train_time:17459ms step_avg:160.17ms
step:120/1530 train_loss:4.3073 train_time:17624ms step_avg:160.21ms
step:121/1530 train_loss:4.2997 train_time:17787ms step_avg:160.24ms
step:122/1530 train_loss:4.4566 train_time:17951ms step_avg:160.28ms
step:123/1530 train_loss:4.2762 train_time:18115ms step_avg:160.31ms
step:124/1530 train_loss:4.5665 train_time:18278ms step_avg:160.34ms
step:125/1530 train_loss:4.4379 train_time:18443ms step_avg:160.38ms
step:125/1530 val_loss:4.3947 train_time:18490ms step_avg:160.78ms
step:126/1530 train_loss:4.4132 train_time:18607ms step_avg:160.41ms
step:127/1530 train_loss:4.4084 train_time:18774ms step_avg:160.46ms
step:128/1530 train_loss:4.3609 train_time:18937ms step_avg:160.48ms
step:129/1530 train_loss:4.6691 train_time:19102ms step_avg:160.52ms
step:130/1530 train_loss:4.3470 train_time:19266ms step_avg:160.55ms
step:131/1530 train_loss:4.3798 train_time:19430ms step_avg:160.58ms
step:132/1530 train_loss:4.3384 train_time:19595ms step_avg:160.62ms
step:133/1530 train_loss:4.4399 train_time:19759ms step_avg:160.64ms
step:134/1530 train_loss:4.2564 train_time:19922ms step_avg:160.66ms
step:135/1530 train_loss:4.4341 train_time:20089ms step_avg:160.71ms
step:136/1530 train_loss:4.2091 train_time:20254ms step_avg:160.74ms
step:137/1530 train_loss:4.3644 train_time:20418ms step_avg:160.77ms
step:138/1530 train_loss:4.2768 train_time:20582ms step_avg:160.80ms
step:139/1530 train_loss:4.3738 train_time:20746ms step_avg:160.82ms
step:140/1530 train_loss:4.4678 train_time:20910ms step_avg:160.84ms
step:141/1530 train_loss:4.3044 train_time:21074ms step_avg:160.87ms
step:142/1530 train_loss:4.2952 train_time:21237ms step_avg:160.88ms
step:143/1530 train_loss:4.2565 train_time:21401ms step_avg:160.91ms
step:144/1530 train_loss:4.3476 train_time:21564ms step_avg:160.93ms
step:145/1530 train_loss:4.3008 train_time:21728ms step_avg:160.95ms
step:146/1530 train_loss:4.1643 train_time:21892ms step_avg:160.97ms
step:147/1530 train_loss:4.3167 train_time:22056ms step_avg:160.99ms
step:148/1530 train_loss:4.3465 train_time:22220ms step_avg:161.01ms
step:149/1530 train_loss:4.2930 train_time:22385ms step_avg:161.04ms
step:150/1530 train_loss:4.4350 train_time:22549ms step_avg:161.06ms
step:151/1530 train_loss:4.2592 train_time:22712ms step_avg:161.08ms
step:152/1530 train_loss:4.2688 train_time:22876ms step_avg:161.10ms
step:153/1530 train_loss:4.3603 train_time:23039ms step_avg:161.11ms
step:154/1530 train_loss:4.3767 train_time:23203ms step_avg:161.13ms
step:155/1530 train_loss:4.2744 train_time:23369ms step_avg:161.17ms
step:156/1530 train_loss:4.3418 train_time:23532ms step_avg:161.18ms
step:157/1530 train_loss:4.3944 train_time:23695ms step_avg:161.19ms
step:158/1530 train_loss:4.2445 train_time:23859ms step_avg:161.21ms
step:159/1530 train_loss:4.3041 train_time:24024ms step_avg:161.23ms
step:160/1530 train_loss:4.1281 train_time:24188ms step_avg:161.25ms
step:161/1530 train_loss:4.3485 train_time:24352ms step_avg:161.27ms
step:162/1530 train_loss:4.3600 train_time:24517ms step_avg:161.29ms
step:163/1530 train_loss:4.3413 train_time:24681ms step_avg:161.31ms
step:164/1530 train_loss:4.1821 train_time:24844ms step_avg:161.32ms
step:165/1530 train_loss:4.2751 train_time:25007ms step_avg:161.34ms
step:166/1530 train_loss:4.3140 train_time:25172ms step_avg:161.36ms
step:167/1530 train_loss:4.1992 train_time:25335ms step_avg:161.37ms
step:168/1530 train_loss:4.2923 train_time:25500ms step_avg:161.39ms
step:169/1530 train_loss:4.1512 train_time:25663ms step_avg:161.40ms
step:170/1530 train_loss:4.0127 train_time:25827ms step_avg:161.42ms
step:171/1530 train_loss:4.2005 train_time:25991ms step_avg:161.43ms
step:172/1530 train_loss:4.1925 train_time:26154ms step_avg:161.44ms
step:173/1530 train_loss:4.2693 train_time:26317ms step_avg:161.46ms
step:174/1530 train_loss:4.4146 train_time:26481ms step_avg:161.47ms
step:175/1530 train_loss:4.2368 train_time:26644ms step_avg:161.48ms
step:176/1530 train_loss:4.0758 train_time:26807ms step_avg:161.49ms
step:177/1530 train_loss:4.0559 train_time:26971ms step_avg:161.50ms
step:178/1530 train_loss:4.1788 train_time:27133ms step_avg:161.51ms
step:179/1530 train_loss:4.1233 train_time:27296ms step_avg:161.51ms
step:180/1530 train_loss:4.1036 train_time:27459ms step_avg:161.52ms
step:181/1530 train_loss:4.2804 train_time:27621ms step_avg:161.53ms
step:182/1530 train_loss:4.1478 train_time:27786ms step_avg:161.54ms
step:183/1530 train_loss:4.1266 train_time:27949ms step_avg:161.55ms
step:184/1530 train_loss:4.1265 train_time:28111ms step_avg:161.56ms
step:185/1530 train_loss:4.2060 train_time:28274ms step_avg:161.57ms
step:186/1530 train_loss:4.1709 train_time:28437ms step_avg:161.57ms
step:187/1530 train_loss:4.2264 train_time:28600ms step_avg:161.58ms
step:188/1530 train_loss:4.1721 train_time:28901ms step_avg:162.37ms
step:189/1530 train_loss:4.1035 train_time:29240ms step_avg:163.35ms
step:190/1530 train_loss:4.2002 train_time:29402ms step_avg:163.35ms
step:191/1530 train_loss:4.0778 train_time:29566ms step_avg:163.35ms
step:192/1530 train_loss:4.0225 train_time:29730ms step_avg:163.35ms
step:193/1530 train_loss:4.2484 train_time:29893ms step_avg:163.35ms
step:194/1530 train_loss:4.1718 train_time:30056ms step_avg:163.35ms
step:195/1530 train_loss:4.3566 train_time:30218ms step_avg:163.34ms
step:196/1530 train_loss:4.1695 train_time:30382ms step_avg:163.34ms
step:197/1530 train_loss:4.0386 train_time:30545ms step_avg:163.34ms
step:198/1530 train_loss:4.1775 train_time:30708ms step_avg:163.34ms
step:199/1530 train_loss:4.0328 train_time:30871ms step_avg:163.34ms
step:200/1530 train_loss:4.1033 train_time:31034ms step_avg:163.34ms
step:201/1530 train_loss:4.0108 train_time:31196ms step_avg:163.33ms
step:202/1530 train_loss:4.2525 train_time:31359ms step_avg:163.33ms
step:203/1530 train_loss:4.0558 train_time:31522ms step_avg:163.33ms
step:204/1530 train_loss:4.1834 train_time:31687ms step_avg:163.33ms
step:205/1530 train_loss:4.2495 train_time:31850ms step_avg:163.33ms
step:206/1530 train_loss:3.9420 train_time:32012ms step_avg:163.33ms
step:207/1530 train_loss:4.0708 train_time:32175ms step_avg:163.32ms
step:208/1530 train_loss:4.0949 train_time:32336ms step_avg:163.31ms
step:209/1530 train_loss:4.2354 train_time:32499ms step_avg:163.31ms
step:210/1530 train_loss:4.1682 train_time:32662ms step_avg:163.31ms
step:211/1530 train_loss:4.0554 train_time:32825ms step_avg:163.31ms
step:212/1530 train_loss:4.1120 train_time:32990ms step_avg:163.31ms
step:213/1530 train_loss:4.0427 train_time:33151ms step_avg:163.31ms
step:214/1530 train_loss:4.1128 train_time:33315ms step_avg:163.31ms
step:215/1530 train_loss:3.9651 train_time:33479ms step_avg:163.31ms
step:216/1530 train_loss:4.0031 train_time:33641ms step_avg:163.31ms
step:217/1530 train_loss:4.0246 train_time:33804ms step_avg:163.31ms
step:218/1530 train_loss:4.0878 train_time:33968ms step_avg:163.31ms
step:219/1530 train_loss:4.0655 train_time:34130ms step_avg:163.30ms
step:220/1530 train_loss:4.0784 train_time:34294ms step_avg:163.30ms
step:221/1530 train_loss:4.0886 train_time:34457ms step_avg:163.30ms
step:222/1530 train_loss:4.0013 train_time:34620ms step_avg:163.30ms
step:223/1530 train_loss:3.9789 train_time:34784ms step_avg:163.30ms
step:224/1530 train_loss:4.2944 train_time:34947ms step_avg:163.30ms
step:225/1530 train_loss:3.9191 train_time:35109ms step_avg:163.30ms
step:226/1530 train_loss:3.9887 train_time:35273ms step_avg:163.30ms
step:227/1530 train_loss:3.9668 train_time:35436ms step_avg:163.30ms
step:228/1530 train_loss:4.1385 train_time:35600ms step_avg:163.30ms
step:229/1530 train_loss:3.9209 train_time:35768ms step_avg:163.32ms
step:230/1530 train_loss:4.0321 train_time:35934ms step_avg:163.33ms
step:231/1530 train_loss:3.8989 train_time:36099ms step_avg:163.34ms
step:232/1530 train_loss:3.9710 train_time:36265ms step_avg:163.35ms
step:233/1530 train_loss:4.0848 train_time:36432ms step_avg:163.37ms
step:234/1530 train_loss:4.0295 train_time:36598ms step_avg:163.38ms
step:235/1530 train_loss:3.8875 train_time:36764ms step_avg:163.40ms
step:236/1530 train_loss:4.0730 train_time:36930ms step_avg:163.41ms
step:237/1530 train_loss:4.0729 train_time:37096ms step_avg:163.42ms
step:238/1530 train_loss:3.9353 train_time:37262ms step_avg:163.43ms
step:239/1530 train_loss:4.0735 train_time:37426ms step_avg:163.43ms
step:240/1530 train_loss:4.1086 train_time:37596ms step_avg:163.46ms
step:241/1530 train_loss:3.9590 train_time:37761ms step_avg:163.47ms
step:242/1530 train_loss:4.1383 train_time:37929ms step_avg:163.49ms
step:243/1530 train_loss:4.0082 train_time:38095ms step_avg:163.50ms
step:244/1530 train_loss:4.0717 train_time:38260ms step_avg:163.51ms
step:245/1530 train_loss:4.1371 train_time:38426ms step_avg:163.52ms
step:246/1530 train_loss:4.0484 train_time:38593ms step_avg:163.53ms
step:247/1530 train_loss:3.9953 train_time:38759ms step_avg:163.54ms
step:248/1530 train_loss:4.0835 train_time:38926ms step_avg:163.55ms
step:249/1530 train_loss:3.9178 train_time:39092ms step_avg:163.57ms
step:250/1530 train_loss:3.9655 train_time:39257ms step_avg:163.57ms
step:250/1530 val_loss:3.9955 train_time:39305ms step_avg:163.77ms
step:251/1530 train_loss:4.0666 train_time:39428ms step_avg:163.60ms
step:252/1530 train_loss:4.1487 train_time:39594ms step_avg:163.61ms
step:253/1530 train_loss:3.9319 train_time:39760ms step_avg:163.62ms
step:254/1530 train_loss:3.8862 train_time:39928ms step_avg:163.64ms
step:255/1530 train_loss:4.0786 train_time:40094ms step_avg:163.65ms
step:256/1530 train_loss:3.9826 train_time:40259ms step_avg:163.66ms
step:257/1530 train_loss:3.9917 train_time:40428ms step_avg:163.67ms
step:258/1530 train_loss:3.9936 train_time:40593ms step_avg:163.68ms
step:259/1530 train_loss:4.0290 train_time:40759ms step_avg:163.69ms
step:260/1530 train_loss:4.0507 train_time:40928ms step_avg:163.71ms
step:261/1530 train_loss:4.0222 train_time:41093ms step_avg:163.72ms
step:262/1530 train_loss:3.9845 train_time:41259ms step_avg:163.73ms
step:263/1530 train_loss:3.8881 train_time:41426ms step_avg:163.74ms
step:264/1530 train_loss:3.9829 train_time:41591ms step_avg:163.75ms
step:265/1530 train_loss:3.8640 train_time:41758ms step_avg:163.76ms
step:266/1530 train_loss:3.9194 train_time:41926ms step_avg:163.77ms
step:267/1530 train_loss:3.9225 train_time:42091ms step_avg:163.78ms
step:268/1530 train_loss:3.9564 train_time:42256ms step_avg:163.78ms
step:269/1530 train_loss:3.8506 train_time:42423ms step_avg:163.79ms
step:270/1530 train_loss:4.0985 train_time:42588ms step_avg:163.80ms
step:271/1530 train_loss:3.9691 train_time:42754ms step_avg:163.81ms
step:272/1530 train_loss:3.9232 train_time:42921ms step_avg:163.82ms
step:273/1530 train_loss:3.9394 train_time:43088ms step_avg:163.83ms
step:274/1530 train_loss:4.0318 train_time:43254ms step_avg:163.84ms
step:275/1530 train_loss:4.0622 train_time:43420ms step_avg:163.85ms
step:276/1530 train_loss:4.2305 train_time:43586ms step_avg:163.86ms
step:277/1530 train_loss:4.0432 train_time:43752ms step_avg:163.86ms
step:278/1530 train_loss:4.0804 train_time:43918ms step_avg:163.87ms
step:279/1530 train_loss:3.9944 train_time:44084ms step_avg:163.88ms
step:280/1530 train_loss:4.1732 train_time:44251ms step_avg:163.89ms
step:281/1530 train_loss:3.9644 train_time:44418ms step_avg:163.90ms
step:282/1530 train_loss:3.9389 train_time:44586ms step_avg:163.92ms
step:283/1530 train_loss:3.9067 train_time:44751ms step_avg:163.92ms
step:284/1530 train_loss:4.0450 train_time:44917ms step_avg:163.93ms
step:285/1530 train_loss:4.0624 train_time:45083ms step_avg:163.94ms
step:286/1530 train_loss:4.0893 train_time:45249ms step_avg:163.95ms
step:287/1530 train_loss:3.9007 train_time:45415ms step_avg:163.95ms
step:288/1530 train_loss:4.0029 train_time:45579ms step_avg:163.95ms
step:289/1530 train_loss:3.8672 train_time:45745ms step_avg:163.96ms
step:290/1530 train_loss:3.8510 train_time:45910ms step_avg:163.96ms
step:291/1530 train_loss:3.9057 train_time:46075ms step_avg:163.97ms
step:292/1530 train_loss:3.8609 train_time:46243ms step_avg:163.98ms
step:293/1530 train_loss:3.8996 train_time:46408ms step_avg:163.99ms
step:294/1530 train_loss:3.9367 train_time:46573ms step_avg:163.99ms
step:295/1530 train_loss:3.8368 train_time:46737ms step_avg:163.99ms
step:296/1530 train_loss:3.8549 train_time:46905ms step_avg:164.00ms
step:297/1530 train_loss:3.8573 train_time:47071ms step_avg:164.01ms
step:298/1530 train_loss:3.9629 train_time:47236ms step_avg:164.02ms
step:299/1530 train_loss:3.8135 train_time:47402ms step_avg:164.02ms
step:300/1530 train_loss:3.9683 train_time:47568ms step_avg:164.03ms
step:301/1530 train_loss:3.9600 train_time:47733ms step_avg:164.03ms
step:302/1530 train_loss:3.9301 train_time:47898ms step_avg:164.03ms
step:303/1530 train_loss:3.9787 train_time:48063ms step_avg:164.04ms
step:304/1530 train_loss:3.9678 train_time:48229ms step_avg:164.05ms
step:305/1530 train_loss:4.4479 train_time:48394ms step_avg:164.05ms
step:306/1530 train_loss:3.9300 train_time:48559ms step_avg:164.05ms
step:307/1530 train_loss:3.8296 train_time:48726ms step_avg:164.06ms
step:308/1530 train_loss:3.9696 train_time:48889ms step_avg:164.06ms
step:309/1530 train_loss:3.8738 train_time:49055ms step_avg:164.06ms
step:310/1530 train_loss:4.0799 train_time:49220ms step_avg:164.07ms
step:311/1530 train_loss:3.9268 train_time:49386ms step_avg:164.07ms
step:312/1530 train_loss:3.8562 train_time:49550ms step_avg:164.07ms
step:313/1530 train_loss:3.9326 train_time:49716ms step_avg:164.08ms
step:314/1530 train_loss:4.0538 train_time:49882ms step_avg:164.09ms
step:315/1530 train_loss:3.9374 train_time:50048ms step_avg:164.09ms
step:316/1530 train_loss:3.7894 train_time:50213ms step_avg:164.09ms
step:317/1530 train_loss:3.8668 train_time:50378ms step_avg:164.10ms
step:318/1530 train_loss:3.9210 train_time:50547ms step_avg:164.11ms
step:319/1530 train_loss:3.8894 train_time:50713ms step_avg:164.12ms
step:320/1530 train_loss:4.0038 train_time:50877ms step_avg:164.12ms
step:321/1530 train_loss:3.9554 train_time:51044ms step_avg:164.13ms
step:322/1530 train_loss:3.9292 train_time:51209ms step_avg:164.13ms
step:323/1530 train_loss:4.0017 train_time:51374ms step_avg:164.13ms
step:324/1530 train_loss:3.9387 train_time:51540ms step_avg:164.14ms
step:325/1530 train_loss:4.0122 train_time:51706ms step_avg:164.15ms
step:326/1530 train_loss:3.8888 train_time:51871ms step_avg:164.15ms
step:327/1530 train_loss:4.3926 train_time:52036ms step_avg:164.15ms
step:328/1530 train_loss:4.0737 train_time:52201ms step_avg:164.15ms
step:329/1530 train_loss:3.7944 train_time:52367ms step_avg:164.16ms
step:330/1530 train_loss:3.7484 train_time:52533ms step_avg:164.16ms
step:331/1530 train_loss:3.9718 train_time:52698ms step_avg:164.17ms
step:332/1530 train_loss:3.9093 train_time:52864ms step_avg:164.17ms
step:333/1530 train_loss:3.8810 train_time:53029ms step_avg:164.18ms
step:334/1530 train_loss:3.8439 train_time:53193ms step_avg:164.18ms
step:335/1530 train_loss:4.0092 train_time:53358ms step_avg:164.18ms
step:336/1530 train_loss:3.9613 train_time:53525ms step_avg:164.19ms
step:337/1530 train_loss:4.4189 train_time:53690ms step_avg:164.19ms
step:338/1530 train_loss:3.9318 train_time:53855ms step_avg:164.19ms
step:339/1530 train_loss:3.8578 train_time:54020ms step_avg:164.20ms
step:340/1530 train_loss:3.9305 train_time:54186ms step_avg:164.20ms
step:341/1530 train_loss:3.8557 train_time:54353ms step_avg:164.21ms
step:342/1530 train_loss:3.8000 train_time:54521ms step_avg:164.22ms
step:343/1530 train_loss:3.8330 train_time:54689ms step_avg:164.23ms
step:344/1530 train_loss:3.9954 train_time:54856ms step_avg:164.24ms
step:345/1530 train_loss:3.8148 train_time:55026ms step_avg:164.26ms
step:346/1530 train_loss:3.7610 train_time:55194ms step_avg:164.27ms
step:347/1530 train_loss:3.7911 train_time:55363ms step_avg:164.28ms
step:348/1530 train_loss:3.8563 train_time:55531ms step_avg:164.29ms
step:349/1530 train_loss:3.8288 train_time:55697ms step_avg:164.30ms
step:350/1530 train_loss:3.5689 train_time:55867ms step_avg:164.32ms
step:351/1530 train_loss:3.8232 train_time:56035ms step_avg:164.33ms
step:352/1530 train_loss:4.1759 train_time:56203ms step_avg:164.34ms
step:353/1530 train_loss:3.6531 train_time:56371ms step_avg:164.35ms
step:354/1530 train_loss:3.9222 train_time:56538ms step_avg:164.35ms
step:355/1530 train_loss:3.7824 train_time:56709ms step_avg:164.37ms
step:356/1530 train_loss:3.8763 train_time:56878ms step_avg:164.39ms
step:357/1530 train_loss:3.7592 train_time:57047ms step_avg:164.40ms
step:358/1530 train_loss:3.8645 train_time:57215ms step_avg:164.41ms
step:359/1530 train_loss:3.7710 train_time:57383ms step_avg:164.42ms
step:360/1530 train_loss:3.4282 train_time:57553ms step_avg:164.44ms
step:361/1530 train_loss:4.0128 train_time:57722ms step_avg:164.45ms
step:362/1530 train_loss:3.9172 train_time:57890ms step_avg:164.46ms
step:363/1530 train_loss:3.8377 train_time:58059ms step_avg:164.47ms
step:364/1530 train_loss:3.7420 train_time:58229ms step_avg:164.49ms
step:365/1530 train_loss:3.9124 train_time:58396ms step_avg:164.50ms
step:366/1530 train_loss:3.8564 train_time:58564ms step_avg:164.51ms
step:367/1530 train_loss:3.8550 train_time:58732ms step_avg:164.52ms
step:368/1530 train_loss:3.8466 train_time:58899ms step_avg:164.52ms
step:369/1530 train_loss:3.7468 train_time:59068ms step_avg:164.53ms
step:370/1530 train_loss:3.8743 train_time:59235ms step_avg:164.54ms
step:371/1530 train_loss:3.7281 train_time:59403ms step_avg:164.55ms
step:372/1530 train_loss:3.6905 train_time:59571ms step_avg:164.56ms
step:373/1530 train_loss:3.9113 train_time:59739ms step_avg:164.57ms
step:374/1530 train_loss:3.8226 train_time:59907ms step_avg:164.58ms
step:375/1530 train_loss:3.7940 train_time:60075ms step_avg:164.59ms
step:375/1530 val_loss:3.8199 train_time:60123ms step_avg:164.72ms