-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_speaker.py
279 lines (229 loc) · 9.8 KB
/
train_speaker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import torch
from torch import optim
import os
import os.path
import time
import numpy as np
import pandas as pd
from collections import defaultdict
import argparse
import utils
from utils import read_vocab, Tokenizer, timeSince, try_cuda
from env import R2RBatch, ImageFeatures
from model import SpeakerEncoderLSTM, SpeakerDecoderLSTM
from speaker import Seq2SeqSpeaker
import eval_speaker
from vocab import SUBTRAIN_VOCAB, TRAIN_VOCAB, TRAINVAL_VOCAB
MAX_INSTRUCTION_LENGTH = 80
batch_size = 100
max_episode_len = 10
word_embedding_size = 300
glove_path = 'tasks/R2R/data/train_glove.npy'
action_embedding_size = 2048+128
hidden_size = 512
bidirectional = False
dropout_ratio = 0.5
feedback_method = 'teacher' # teacher or sample
learning_rate = 0.0001
weight_decay = 0.0005
FEATURE_SIZE = 2048+128
n_iters = 20000
log_every = 100
save_every = 1000
def get_model_prefix(args, image_feature_list):
image_feature_name = "+".join(
[featurizer.get_name() for featurizer in image_feature_list])
model_prefix = 'speaker_{}_{}'.format(
feedback_method, image_feature_name)
if args.use_train_subset:
model_prefix = 'trainsub_' + model_prefix
return model_prefix
def eval_model(agent, results_path, use_dropout, feedback, allow_cheat=False):
agent.results_path = results_path
agent.test(
use_dropout=use_dropout, feedback=feedback, allow_cheat=allow_cheat)
def filter_param(param_list):
return [p for p in param_list if p.requires_grad]
def train(args, train_env, agent, log_every=log_every, val_envs=None):
''' Train on training set, validating on both seen and unseen. '''
if val_envs is None:
val_envs = {}
print('Training with %s feedback' % feedback_method)
encoder_optimizer = optim.Adam(
filter_param(agent.encoder.parameters()), lr=learning_rate,
weight_decay=weight_decay)
decoder_optimizer = optim.Adam(
filter_param(agent.decoder.parameters()), lr=learning_rate,
weight_decay=weight_decay)
data_log = defaultdict(list)
start = time.time()
split_string = "-".join(train_env.splits)
def make_path(n_iter):
return os.path.join(
args.SNAPSHOT_DIR, '%s_%s_iter_%d' % (
get_model_prefix(args, train_env.image_features_list),
split_string, n_iter))
best_metrics = {}
last_model_saved = {}
for idx in range(0, args.n_iters, log_every):
agent.env = train_env
interval = min(log_every, args.n_iters-idx)
iter = idx + interval
data_log['iteration'].append(iter)
# Train for log_every interval
agent.train(encoder_optimizer, decoder_optimizer, interval,
feedback=feedback_method)
train_losses = np.array(agent.losses)
assert len(train_losses) == interval
train_loss_avg = np.average(train_losses)
data_log['train loss'].append(train_loss_avg)
loss_str = 'train loss: %.4f' % train_loss_avg
save_log = []
# Run validation
for env_name, (val_env, evaluator) in sorted(val_envs.items()):
agent.env = val_env
# Get validation loss under the same conditions as training
agent.test(use_dropout=True, feedback=feedback_method,
allow_cheat=True)
val_losses = np.array(agent.losses)
val_loss_avg = np.average(val_losses)
data_log['%s loss' % env_name].append(val_loss_avg)
agent.results_path = '%s%s_%s_iter_%d.json' % (
args.RESULT_DIR, get_model_prefix(
args, train_env.image_features_list),
env_name, iter)
# Get validation distance from goal under evaluation conditions
results = agent.test(use_dropout=False, feedback='argmax')
if not args.no_save:
agent.write_results()
print("evaluating on {}".format(env_name))
score_summary, _ = evaluator.score_results(results, verbose=True)
loss_str += ', %s loss: %.4f' % (env_name, val_loss_avg)
for metric, val in score_summary.items():
data_log['%s %s' % (env_name, metric)].append(val)
if metric in ['bleu']:
loss_str += ', %s: %.3f' % (metric, val)
key = (env_name, metric)
if key not in best_metrics or best_metrics[key] < val:
best_metrics[key] = val
if not args.no_save:
model_path = make_path(iter) + "_%s-%s=%.3f" % (
env_name, metric, val)
save_log.append(
"new best, saved model to %s" % model_path)
agent.save(model_path)
if key in last_model_saved:
for old_model_path in \
agent._encoder_and_decoder_paths(
last_model_saved[key]):
os.remove(old_model_path)
last_model_saved[key] = model_path
print(('%s (%d %d%%) %s' % (
timeSince(start, float(iter)/args.n_iters),
iter, float(iter)/args.n_iters*100, loss_str)))
for s in save_log:
print(s)
if not args.no_save:
if save_every and iter % save_every == 0:
agent.save(make_path(iter))
df = pd.DataFrame(data_log)
df.set_index('iteration')
df_path = '%s%s_log.csv' % (
args.PLOT_DIR, get_model_prefix(
args, train_env.image_features_list))
df.to_csv(df_path)
def setup():
torch.manual_seed(1)
torch.cuda.manual_seed(1)
def make_speaker(args):
enc_hidden_size = hidden_size//2 if bidirectional else hidden_size
glove = np.load(glove_path)
feature_size = FEATURE_SIZE
vocab = read_vocab(TRAIN_VOCAB)
encoder = try_cuda(SpeakerEncoderLSTM(
action_embedding_size, feature_size, enc_hidden_size, dropout_ratio,
bidirectional=bidirectional))
decoder = try_cuda(SpeakerDecoderLSTM(
len(vocab), word_embedding_size, hidden_size, dropout_ratio,
glove=glove))
agent = Seq2SeqSpeaker(
None, "", encoder, decoder, MAX_INSTRUCTION_LENGTH)
return agent
def make_env_and_models(args, train_vocab_path, train_splits, test_splits,
test_instruction_limit=None):
setup()
image_features_list = ImageFeatures.from_args(args)
vocab = read_vocab(train_vocab_path)
tok = Tokenizer(vocab=vocab)
train_env = R2RBatch(image_features_list, batch_size=batch_size,
splits=train_splits, tokenizer=tok)
enc_hidden_size = hidden_size//2 if bidirectional else hidden_size
glove = np.load(glove_path)
feature_size = FEATURE_SIZE
encoder = try_cuda(SpeakerEncoderLSTM(
action_embedding_size, feature_size, enc_hidden_size, dropout_ratio,
bidirectional=bidirectional))
decoder = try_cuda(SpeakerDecoderLSTM(
len(vocab), word_embedding_size, hidden_size, dropout_ratio,
glove=glove))
test_envs = {
split: (R2RBatch(image_features_list, batch_size=batch_size,
splits=[split], tokenizer=tok,
instruction_limit=test_instruction_limit),
eval_speaker.SpeakerEvaluation(
[split], instructions_per_path=test_instruction_limit))
for split in test_splits}
return train_env, test_envs, encoder, decoder
def train_setup(args):
train_splits = ['train']
# val_splits = ['train_subset', 'val_seen', 'val_unseen']
val_splits = ['val_seen', 'val_unseen']
vocab = TRAIN_VOCAB
if args.use_train_subset:
train_splits = ['sub_' + split for split in train_splits]
val_splits = ['sub_' + split for split in val_splits]
vocab = SUBTRAIN_VOCAB
train_env, val_envs, encoder, decoder = make_env_and_models(
args, vocab, train_splits, val_splits)
agent = Seq2SeqSpeaker(
train_env, "", encoder, decoder, MAX_INSTRUCTION_LENGTH)
return agent, train_env, val_envs
# Test set prediction will be handled separately
# def test_setup(args):
# train_env, test_envs, encoder, decoder = make_env_and_models(
# args, TRAINVAL_VOCAB, ['train', 'val_seen', 'val_unseen'], ['test'])
# agent = Seq2SeqSpeaker(
# None, "", encoder, decoder, MAX_INSTRUCTION_LENGTH,
# max_episode_len=max_episode_len)
# return agent, train_env, test_envs
def train_val(args):
''' Train on the training set, and validate on seen and unseen splits. '''
agent, train_env, val_envs = train_setup(args)
train(args, train_env, agent, val_envs=val_envs)
# Test set prediction will be handled separately
# def test_submission(args):
# ''' Train on combined training and validation sets, and generate test
# submission. '''
# agent, train_env, test_envs = test_setup(args)
# train(args, train_env, agent)
#
# test_env = test_envs['test']
# agent.env = test_env
#
# agent.results_path = '%s%s_%s_iter_%d.json' % (
# args.RESULT_DIR, get_model_prefix(args, train_env.image_features_list),
# 'test', n_iters)
# agent.test(use_dropout=False, feedback='argmax')
# if not args.no_save:
# agent.write_results()
def make_arg_parser():
parser = argparse.ArgumentParser()
ImageFeatures.add_args(parser)
parser.add_argument(
"--use_train_subset", action='store_true',
help="use a subset of the original train data for validation")
parser.add_argument("--n_iters", type=int, default=20000)
parser.add_argument("--no_save", action='store_true')
return parser
if __name__ == "__main__":
utils.run(make_arg_parser(), train_val)