forked from DHI-GRAS/qgis-processing-swat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ASS_utilities.py
275 lines (239 loc) · 11.2 KB
/
ASS_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
***************************************************************************
ASS_utilities.py
-------------------------------------
Copyright (C) 2014 TIGER-NET (www.tiger-net.org)
***************************************************************************
* This plugin is part of the Water Observation Information System (WOIS) *
* developed under the TIGER-NET project funded by the European Space *
* Agency as part of the long-term TIGER initiative aiming at promoting *
* the use of Earth Observation (EO) for improved Integrated Water *
* Resources Management (IWRM) in Africa. *
* *
* WOIS is a free software i.e. you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published *
* by the Free Software Foundation, either version 3 of the License, *
* or (at your option) any later version. *
* *
* WOIS is distributed in the hope that it will be useful, but WITHOUT ANY *
* WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
* for more details. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************
"""
import matplotlib
matplotlib.use("Qt4Agg")
from matplotlib.pylab import *
import numpy
import os
#from processing.core.GeoAlgorithmExecutionException import GeoAlgorithmExecutionException
import read_SWAT_out
from SWAT_output_format_specs import SWAT_output_format_specs
RES_OUTSPECS = SWAT_output_format_specs()
def ReadNoSubs(MOD_DESC):
if os.path.isfile(MOD_DESC):
MOD_DESC_file = open(MOD_DESC,'r')
model_data = MOD_DESC_file.readlines()
MOD_DESC_file.close
nbrch=int(model_data[-1][12:])
else:
raise GeoAlgorithmExecutionException('File ' + MOD_DESC + ' does not exist')
return nbrch
def ReadObsFlowsAss(obs_file):
"""Read the observed flows for the assimilation (time, obs, measurement error, reachID)"""
if os.path.isfile(obs_file):
filename = (obs_file)
f = [0,1,2,3]
Q_obs = numpy.genfromtxt(filename, delimiter=',', usecols=f)
else:
raise GeoAlgorithmExecutionException('File ' + obs_file + ' does not exist')
return(Q_obs)
def LoadData(Ass_folder, nbrch, Enddate, Startdate):
"""Load data from Assimilation file and runoff files"""
filename = Ass_folder + os.sep + 'Assimilationfile.txt'
for f in (1,2,3,5,6):
data = numpy.genfromtxt(filename, delimiter=' ', skip_header=1, usecols=f)
if f==1:
X = data
if f==2:
K = data
if f==3:
drainsTo = data
if f==5:
alphaerr = data
if f==6:
loss = data
filename = Ass_folder + os.sep + 'Assimilationfile_q.txt'
q = numpy.zeros([nbrch,nbrch])
for i in range(0,nbrch):
data = numpy.genfromtxt(filename, delimiter=' ', skip_header=1, usecols=i)
q[:,i] = data
#Getting the runoff from runoff text files
days = int(Enddate-Startdate)+1
RR = numpy.zeros([days,nbrch])
for i in range(0,nbrch):
filename = Ass_folder + os.sep + 'runoff'+ str(i+1) + '.txt'
RR[:,i] = numpy.genfromtxt(filename, delimiter = ' ', skip_header = 1, usecols=1)
# Check numerical stability
deltaTmax = 2.0*K*(1.0-X)
deltaTmin = 2*K*X
# If all K require timestep larger than 1, the timestep will be set to one and the reaches sub-divided accordingly
if max(deltaTmin)>1.0:
timestep = 1.0
# If a K requires a timestep smaller than 1, the timestep will be decreased and the reaches sub-divided accordingly
if min(deltaTmax)<1.0:
timestep = 1.0/numpy.ceil(1.0/min(deltaTmax))
if timestep<0.1:
timestep = 0.1
else:
timestep = 1.0
max_K = timestep/(2*X)
maxK = max(max_K)
#Checking for large K values
a = numpy.where(K>maxK)
#In cases with large differences in the K values, the reaches in question will be subdivided into new reaches
if len(a[0])>0:
new_reaches = []
new_K = []
K_temp = K
for i in range(0,len(a[0])):
if K[a[0][i]]<2*max_K[0]:
K_temp[a[0][i]] = K[a[0][i]]/2
for j in range(0,1):
new_K.append(K_temp[a[0][i]])
new_reaches.append(a[0][i]+1)
elif K[a[0][i]]<3*max_K[0]:
K_temp[a[0][i]] = K[a[0][i]]/3
for j in range(0,2):
new_K.append(K_temp[a[0][i]])
new_reaches.append(a[0][i]+1)
elif K[a[0][i]]<4*max_K[0]:
K_temp[a[0][i]] = K[a[0][i]]/4
for j in range(0,3):
new_K.append(K_temp[a[0][i]])
new_reaches.append(a[0][i]+1)
else:
K_temp[a[0][i]] = K[a[0][i]]/5
for j in range(0,4):
new_K.append(K_temp[a[0][i]])
new_reaches.append(a[0][i]+1)
add_reaches = numpy.zeros([len(new_reaches)])
add_reach_nr = numpy.zeros([len(add_reaches)])
for i in range(0,len(add_reaches)):
add_reaches[i] = new_reaches[i]
add_reach_nr[i] = (nbrch+1+i)
# Enlarging the inputs to fit to the new number of reaches
K_add = numpy.zeros([nbrch+len(new_reaches)])
X_add = numpy.zeros([nbrch+len(new_reaches)])
drainsTo_add = numpy.zeros([nbrch+len(new_reaches)])
loss_add = numpy.zeros([nbrch+len(new_reaches)])
RR_add = numpy.zeros([days,nbrch+len(new_reaches)])
alphaerr_add = numpy.zeros([nbrch+len(new_reaches)])
q_add = numpy.zeros([nbrch+len(new_reaches),nbrch+len(new_reaches)])
for i in range(0,nbrch):
alphaerr_add[i] = alphaerr[i]
q_add[i,i] = q[i,i]
K_add[i] = K_temp[i]
X_add[i] = X[i]
RR_add[:,i] = RR[:,i]
drainsTo_add[i] = drainsTo[i]
loss_add[i] = loss[i]
for i in range (0,len(new_reaches)):
alphaerr_add[i+nbrch] = alphaerr[add_reaches[i]-1]
X_add[i+nbrch] = X[add_reaches[i]-1]
q_add[i+nbrch,i+nbrch] = q[add_reaches[i]-1,add_reaches[i]-1]
for j in range(0,len(new_K)):
K_add[nbrch+j] = new_K[j]
#Creating the new drains to array (drainsTo_add) and splitting the runoff input and losses among the new subreaches
for i in range(1,nbrch+1):
fr = where(add_reaches==i)
if len(fr[0])>0:
#Divide the losses and runoff to fit the new reahces
loss_add[i-1] = loss[i-1]/(len(fr[0])+1)
RR_add[:,i-1] = RR[:,i-1]/(len(fr[0])+1)
for k in range(0,len(fr[0])):
loss_add[add_reach_nr[fr[0][k]]-1] = loss_add[i-1]
RR_add[:,add_reach_nr[fr[0][k]]-1] = RR_add[:,i-1]
#Find reaches that drain to reach
fdt = where(drainsTo==i)
if len(fdt[0])==0:
drainsTo_add[add_reach_nr[fr[0][0]]-1] = i
if len(fr[0])>1:
for k in range(0,len(fr[0])-1):
drainsTo_add[add_reach_nr[fr[0][k]]-1] = add_reach_nr[fr[0][k+1]]
drainsTo_add[add_reach_nr[fr[0][k+1]]-1] = i
else:
drainsTo_add[add_reach_nr[fr[0][0]]-1] = i
else:
drainsTo_add[fdt[0]] = add_reach_nr[fr[0][0]]
#The rainfall runoff input will now enter at the most upstream sub-reach of the old reach
if len(fr[0])>1:
for k in range(0,len(fr[0])-1):
drainsTo_add[add_reach_nr[fr[0][k]]-1] = add_reach_nr[fr[0][k+1]]
drainsTo_add[add_reach_nr[fr[0][k+1]]-1] = i
else:
drainsTo_add[add_reach_nr[fr[0][0]]-1] = i
#Implementing the new reaches
K = K_add
X = X_add
drainsTo = drainsTo_add
RR = RR_add
alphaerr = alphaerr_add
q = q_add
nbrch_add = len(K)
loss = loss_add
else:
nbrch_add = nbrch
return X,K,drainsTo,alphaerr,q,RR,nbrch_add,timestep,loss
def EstimateLosses(src_folder,Startdate,Enddate,nbrch):
LOSS = numpy.zeros([nbrch])
return LOSS
def MuskSetupFlows(Ass_folder, nbrch, Enddate, Startdate):
"""Set up of the Muskingum propagation"""
#-------------------------------------------------------------------------------
# set up of the Muskingum propagation for a Kalman Filtering application
# X(k+1)=F*X(k)+G1*M(k)+G2*M(k+1)
#-------------------------------------------------------------------------------
(X,K,drainsTo, alphaerr,q,RR,nbrch_add, timestep, loss) = LoadData(Ass_folder, nbrch, Enddate, Startdate)
F=numpy.zeros(shape=(nbrch_add,nbrch_add))
G1=numpy.zeros(shape=(nbrch_add,nbrch_add))
G2=numpy.zeros(shape=(nbrch_add,nbrch_add))
C1=numpy.zeros(shape=(nbrch_add,1))
C2=numpy.zeros(shape=(nbrch_add,1))
C3=numpy.zeros(shape=(nbrch_add,1))
deltaT = timestep #time step (same unit as K)
for i in range(0,nbrch_add):
C1[i] = (deltaT-2*K[i]*X[i])/(2*K[i]*(1-X[i])+deltaT)
C2[i] = (deltaT+2*K[i]*X[i])/(2*K[i]*(1-X[i])+deltaT)
C3[i] = (2*K[i]*(1-X[i])-deltaT)/(2*K[i]*(1-X[i])+deltaT)
for i in range(0,nbrch_add):
F[i,i] = C3[i]
G1[i,i] = C1[i]
G2[i,i] = C2[i]
for j in range(0,nbrch_add):
p = int(drainsTo[j])
TempIndex = [] #TempIndex will be a list of all reaches getting input from reach no j
if p>0:
while p>0:
TempIndex.append(p)
p = int(drainsTo[p-1])
for k in range(0,len(TempIndex)):
i = TempIndex[k]
PC = (C1[TempIndex[0]-1]*C3[j]+C2[TempIndex[0]-1])*(1-loss[j])
for q in range (0,k):
PC = PC*(1-loss[TempIndex[q]-1])
if k>0:
for r in range(0,k):
PC = PC*C1[TempIndex[r+1]-1]
F[i-1,j] = PC
PC2 = 1
PC2 = PC2*C1[TempIndex[0]-1]*(1-loss[j])
if k>0:
for r in range(0,k):
PC2 = PC2*C1[TempIndex[r+1]-1]*(1-loss[TempIndex[r]-1])
G1[i-1,j] = PC2*C2[j]
G2[i-1,j] = PC2*C1[j]
return F,G1,G2