forked from DHI-GRAS/qgis-processing-swat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSENSAN_utilities.py
118 lines (110 loc) · 5.03 KB
/
SENSAN_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
"""
***************************************************************************
SENSAN_utilities.py
-------------------------------------
Copyright (C) 2014 TIGER-NET (www.tiger-net.org)
***************************************************************************
* This plugin is part of the Water Observation Information System (WOIS) *
* developed under the TIGER-NET project funded by the European Space *
* Agency as part of the long-term TIGER initiative aiming at promoting *
* the use of Earth Observation (EO) for improved Integrated Water *
* Resources Management (IWRM) in Africa. *
* *
* WOIS is a free software i.e. you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published *
* by the Free Software Foundation, either version 3 of the License, *
* or (at your option) any later version. *
* *
* WOIS is distributed in the hope that it will be useful, but WITHOUT ANY *
* WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
* for more details. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************
"""
import matplotlib
matplotlib.use('Qt4Agg')
import matplotlib.pyplot as plt
import numpy
import os
import math
from SWAT_SENSAN_specs import SWAT_SENSAN_specs
SENSAN_specs = SWAT_SENSAN_specs()
def read_SENSAN_control(snsfile):
if os.path.isfile(snsfile):
data =[]
sns_file = open(snsfile,'r')
sns = sns_file.readlines()
sns_file.close
data.append(sns[3].split()[0]) # No. of parameters
data.append(sns[3].split()[1]) # No. of observations
data.append(sns[7].split()[0]) # ABSFLE
data.append(sns[8].split()[0]) # RELFLE
data.append(sns[9].split()[0]) # SENSFLE
sns_info = data
return(sns_info)
def CSS_SENSAN(SRC_FOLDER, sns_info):
pct_devfile = SRC_FOLDER + os.sep + 'pct_dev.dat'
pvfile = SRC_FOLDER + os.sep + SENSAN_specs.VARFLE
pct_dev = float(numpy.genfromtxt(pct_devfile))/100.
no_par = int(sns_info[0])
no_obs = int(sns_info[1])
no_total = no_obs+no_par
no_header = math.ceil(no_total/1000.)
if os.path.isfile(SRC_FOLDER +os.sep + SENSAN_specs.RELFLE):
file = SRC_FOLDER +os.sep + SENSAN_specs.RELFLE # out2.dat
f = open(file, 'r')
# Skip header
i = 0
header = []
while i < no_header:
line = f.readline()
line = line.strip() # remove spaces
columns = line.split() # split into columns
for c in range(0,len(columns)):
header.append(columns[c])
i = i+1
# Extract data
data = numpy.zeros([no_par+1,no_total],dtype=float)
j = 0
for line in f:
line = line.strip() # remove spaces
columns = line.split() # split into columns
for c in range(0,len(columns)):
data[j,c] = columns[c]
if len(columns) < 1000:
j = j+1
# Exclude baseline run and parameter values
relO = data[1:,no_par:]
# Calculate CSS
CSS = numpy.zeros([no_par],dtype = float)
for j in range(0,no_par):
n = 0
for i in range(0,no_obs):
if relO[j,i] < 1e+34:
CSS[j] = CSS[j] + abs(relO[j,i]/pct_dev)
n = n+1
if i == no_obs-1:
CSS[j] = CSS[j]/n
dict = {header[0:no_par][i]:CSS[i] for i in range(0,len(header[0:no_par]))}
CSS_sort = [x for x in dict.iteritems()]
CSS_sort.sort(key=lambda x: x[1]) # sort by value
CSS_sort.reverse()
CSS_sorted = numpy.zeros([no_par,1],dtype = float)
p = []
for i in range(0,no_par):
CSS_sorted[i] = CSS_sort[i][1]
p.append(CSS_sort[i][0])
f = open(SRC_FOLDER + os.sep + 'CSS_output'+".txt", "w")
for i in range(0,no_par):
f.write(CSS_sort[i][0] +' '+ str(CSS_sort[i][1]) + ' \r\n')
f.close
width = 0.9
plt.bar(numpy.arange(no_par), CSS_sorted, width, color='b',log=True) # Might add an if statement to figure out whether y-axis should be log.
plt.ylabel('Composite Scaled Sensitivity (-)')
plt.xticks(numpy.arange(no_par)+width/2, p, size='xx-small', rotation=90)
figname = SRC_FOLDER + os.sep + 'CSS_barplot.pdf'
plt.savefig(figname)
plt.show()