forked from DHI-GRAS/qgis-processing-swat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathZonalStats.py
244 lines (209 loc) · 12.4 KB
/
ZonalStats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""
***************************************************************************
ZonalStats.py
-------------------------------------
Copyright (C) 2014 TIGER-NET (www.tiger-net.org)
***************************************************************************
* This plugin is part of the Water Observation Information System (WOIS) *
* developed under the TIGER-NET project funded by the European Space *
* Agency as part of the long-term TIGER initiative aiming at promoting *
* the use of Earth Observation (EO) for improved Integrated Water *
* Resources Management (IWRM) in Africa. *
* *
* WOIS is a free software i.e. you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published *
* by the Free Software Foundation, either version 3 of the License, *
* or (at your option) any later version. *
* *
* WOIS is distributed in the hope that it will be useful, but WITHOUT ANY *
* WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
* for more details. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************
"""
import os
from datetime import date, timedelta, datetime
import math
import processing
from processing.tools import dataobjects
from processing.algs.grass.GrassUtils import GrassUtils
import numpy
from osgeo import gdal
from osgeo.gdalconst import *
def ZonalStats(Startdate, Enddate, model_folder, model_name, InVName, sb_column, subcatchmap_res, file_list, log_file, GeoAlgorithmExecutionException, corr_by_num = None, corr_by_fact = None):
if not os.path.isfile(InVName):
raise GeoAlgorithmExecutionException('No shapefile: \"' + InVName + '\" ')
if file_list == []:
raise GeoAlgorithmExecutionException('List of files is empty')
index = -1
Times = []
first = True
# Get Subbasins from shapefile and save to txt file
layer = dataobjects.getObjectFromUri(InVName)
extent = str(layer.extent().xMinimum())+","+str(layer.extent().xMaximum())+","+str(layer.extent().yMinimum())+","+str(layer.extent().yMaximum())
Subbasin_filename = model_folder + os.sep + sb_column + '.txt'
processing.runalg("grass:v.db.select",InVName,1,sb_column,False,",","","","",False,False,extent, -1, 0.0001, Subbasin_filename)
# Read subbasins from file
Subbasins = []
Subbasin_file = open(Subbasin_filename,'r').readlines()
for n in range(1,len(Subbasin_file)):
Subbasins.append(int(Subbasin_file[n]))
log_file.write("Subbasins: %s \n"%Subbasins)
# Creating a list of dates (year + julian day)
dates = []
for n in range(0,(Enddate-Startdate).days+1):
d = Startdate+timedelta(days=n)
year = d.year
day = (d-date(year,1,1)).days + 1
dates.append(str(year) + str(day).zfill(3))
# Initialising array for results
resultTS = numpy.ones([len(dates),len(Subbasins)]) * -99.0
R_Xres_old = -9999
R_Yres_old = -9999
R_Xleft_old = -9999
R_Ytop_old = -9999
R_Xsize_old = -9999
R_Ysize_old = -9999
# Extracting data and saving in array
for file_name in file_list:
f = os.path.split(file_name)[1]
file_date = date(int(f[0:4]),int(f[4:6]),int(f[6:8]))
year = file_date.year
day = (file_date-date(year,1,1)).days + 1
ind = dates.index(str(year) + str(day).zfill(3)) # index in dates list
# Get info from raster
dataset = gdal.Open(file_name, GA_ReadOnly)
if dataset is None:
raise GeoAlgorithmExecutionException('Cannot open file ' + file_name)
R_Xsize = dataset.RasterXSize
R_Ysize = dataset.RasterYSize
geotransform = dataset.GetGeoTransform()
R_Xres = float('%.3f' %geotransform[1])
R_Yres = float('%.3f' %geotransform[5])
R_Xleft = float('%.3f' %geotransform[0])
R_Ytop = float('%.3f' %geotransform[3])
R_map_array = dataset.ReadAsArray()
b = dataset.GetRasterBand(1)
NoDataValue = b.GetNoDataValue()
if not dataset.GetProjection().split('DATUM["')[1][0:8] == 'WGS_1984':
raise GeoAlgorithmExecutionException('Datafiles must be in WGS_1984 datum')
dataset = None # Closing dataset
b = None
# Check is raster have same size and resolution as last processed raster, if no new coefficient maps will be created
if (first) or (R_Xres_old != R_Xres) or (R_Yres_old != R_Yres) or (R_Xleft_old != R_Xleft) or (R_Ytop_old != R_Ytop) \
or (R_Xsize_old != R_Xsize) or (R_Ysize_old != R_Ysize):
log_file.write("Creating maps \n")
# Rasterize model shapefile
layer = dataobjects.getObjectFromUri(InVName)
V_Xmin = math.floor(layer.extent().xMinimum())-(R_Xres/2)
V_Xmax = math.ceil(layer.extent().xMaximum())+(R_Xres/2)
V_Ymin = math.floor(layer.extent().yMinimum())+(R_Yres/2)
if layer.extent().yMinimum() < V_Ymin:
V_Ymin = math.floor(layer.extent().yMinimum())-(R_Yres/2)
V_Ymax = math.ceil(layer.extent().yMaximum())-(R_Yres/2)
if layer.extent().yMaximum() > V_Ymax:
V_Ymax = math.ceil(layer.extent().yMaximum())+(R_Yres/2)
## V_Ymin = math.floor(layer.extent().yMinimum())+(R_Yres/2)
## V_Ymax = math.ceil(layer.extent().yMaximum())-(R_Yres/2)
extent = str(V_Xmin)+","+str(V_Xmax)+","+str(V_Ymin)+","+str(V_Ymax)
OutRName = model_folder + os.sep + model_name + '_Raster.tif'
#param = {'input':InVName, 'use':0, 'column':sb_column, 'GRASS_REGION_PARAMETER':extent, 'GRASS_REGION_CELLSIZE_PARAMETER':subcatchmap_res, 'GRASS_SNAP_TOLERANCE_PARAMETER':0.01, 'GRASS_MIN_AREA_PARAMETER':0.001, 'output':OutRName}
processing.runalg("grass:v.to.rast.attribute",InVName,0,sb_column,extent,subcatchmap_res,0.01,0.001,OutRName)
# Get info from new raster
dataset = gdal.Open(OutRName, GA_ReadOnly)
if dataset is None:
raise GeoAlgorithmExecutionException('Cannot open file ' + OutRName)
sc = dataset.ReadAsArray()
geotransform = dataset.GetGeoTransform()
sc_Xres = geotransform[1]
sc_Yres = geotransform[5]
sc_Xleft = geotransform[0]
sc_Ytop = geotransform[3]
if not dataset.GetProjection().split('DATUM["')[1][0:8] == 'WGS_1984':
raise GeoAlgorithmExecutionException('Shapefile must be in WGS_1984 datum')
dataset = None # Closing dataset
# Check resolution
if (abs(sc_Xres) > abs(R_Xres)) or (abs(sc_Yres) > abs(R_Ysize)):
raise GeoAlgorithmExecutionException('Resolution of subcatchment map must be less that raster data maps, try using a smaller subcatchment map resolution as input.')
# Check for all subcatchments
if not len(numpy.unique(sc))-1 == len(Subbasins):
raise GeoAlgorithmExecutionException('Not all subcatchment are found in raster map: ' + OutRName + ', try using a smaller subcatchment map resolution as input.')
# Create maps for each subcatchment for use in coefficients map method
# Create array with a unique number for each pixel. Area as rastarized vector map and resolution as raster data map
unique_array = numpy.resize(range(1,int((V_Xmax-V_Xmin)/abs(R_Xres))*int((V_Ymax-V_Ymin)/abs(R_Yres))+1),[int((V_Ymax-V_Ymin)/abs(R_Yres)),int((V_Xmax-V_Xmin)/abs(R_Xres))])
x_factor = sc.shape[1]/float(unique_array.shape[1]) # x resoution factor between rasterized vector and unique_array
y_factor = sc.shape[0]/float(unique_array.shape[0]) # y resoution factor between rasterized vector and unique_array
unique_array_resample = numpy.zeros(sc.shape) # initializing array for resampling
ones_array = numpy.ones([y_factor,x_factor]) # work array
# Resampling
# looping x
for m in range(0,unique_array.shape[1]):
# looping y
for n in range(0,unique_array.shape[0]):
value = unique_array[n,m]
unique_array_resample[n*y_factor:n*y_factor+y_factor,m*x_factor:m*x_factor+x_factor] = ones_array*value
# Creating map for each subcatchment and save in dict
catchment_maps = {}
for catchment in Subbasins:
# Init maps
temp_map = numpy.where(sc == catchment, unique_array_resample, 0.0)
catch_size = len(numpy.nonzero(temp_map)[0])
catchment_map = unique_array * 0.0
catchment_map = catchment_map.reshape(1, catchment_map.size)
# Calculate coefficients
for i in numpy.unique(temp_map)[1:]:
count = len(numpy.nonzero(numpy.where(temp_map == i, temp_map, 0.0))[0]) / float(catch_size)
## count = numpy.count_nonzero(numpy.where(temp_map == i, temp_map, 0.0)) / float(catch_size)
catchment_map[0,int(i-1)] = count
catchment_map = catchment_map.reshape(unique_array.shape) # Coefficients map
# Place coefficient map in array with same size as raster data map
catchment_map_large = numpy.zeros([R_Ysize,R_Xsize])
x_indent = abs((R_Xleft-sc_Xleft)/R_Xres)
y_indent = abs((R_Ytop-sc_Ytop)/R_Yres)
# looping x
for m in range(0,catchment_map.shape[1]):
# looping y
for n in range(0,catchment_map.shape[0]):
catchment_map_large[y_indent+n,x_indent+m] = catchment_map[n,m]
# Put final coefficient map in a dict with key = 'subcatch ID'
catchment_maps[str(catchment)] = catchment_map_large
## # Save coefficient maps to ascii files (For testing)
## numpy.savetxt(model_folder + os.sep + str(catchment) + '.asc', catchment_maps[str(catchment)], delimiter=" ")
## # Add .asc header to files
## header = 'ncols ' + str(R_Xsize) + '\n' + 'nrows ' + str(R_Ysize) + '\n' + 'xllcorner ' + str(R_Xleft) + '\n' \
## + 'yllcorner ' + str(R_Ytop + R_Yres*R_Ysize) + '\n' + 'cellsize ' + str(R_Xres) + '\n' + 'NODATA_value 0\n'
## with open(model_folder + os.sep + str(catchment) + '.asc', "r+") as f:
## old = f.read() # read everything in the file
## f.seek(0) # rewind
## f.write(header + old) # write the new line before
# Values for comparing next raster data map
first = False
R_Xres_old = R_Xres
R_Yres_old = R_Yres
R_Xleft_old = R_Xleft
R_Ytop_old = R_Ytop
R_Xsize_old = R_Xsize
R_Ysize_old = R_Ysize
if NoDataValue != None:
R_map_array[R_map_array==NoDataValue]=numpy.nan
# Extract data from raster map using coefficients maps
for catchment in Subbasins:
# Check for NoDataValues
if (numpy.isnan(R_map_array[catchment_maps[str(catchment)]>0])).any():
resultTS[ind,catchment-1] = float(-99.0)
elif corr_by_num != None:
value = numpy.sum( (R_map_array+corr_by_num) * catchment_maps[str(catchment)])
resultTS[ind,catchment-1] = float(value)
elif corr_by_fact != None:
value = numpy.sum( (R_map_array*corr_by_fact) * catchment_maps[str(catchment)])
resultTS[ind,catchment-1] = float(value)
else:
value = numpy.sum(R_map_array * catchment_maps[str(catchment)])
resultTS[ind,catchment-1] = float(value)
## # Save results to csv file
## numpy.savetxt(model_folder + os.sep + 'Result.csv', resultTS, delimiter=",")
# Return results
return dates, resultTS