-
Notifications
You must be signed in to change notification settings - Fork 12
/
codes.py
482 lines (436 loc) · 18.8 KB
/
codes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
'''
Tested only in interactive use with the Jupyter notebook.
Some tools might fail without it due to the use of `tnrange`
and `tqdm_notebook` from `tqdm`. Similarly `matplotlib` is
used with its interactive interface, which might cause trouble
if `ioff` is not called.'''
import itertools
import numpy as np
import scipy.linalg
import scipy.stats as stats
import scipy.optimize as optimize
try:
import matplotlib.pyplot as plt
except ImportError:
pass
import networkx as nx
from tqdm import tqdm, trange
try:
from IPython import display
except ImportError:
pass
class ToricCode:
'''
::
Lattice:
X00--Q00--X01--Q01--X02...
| | |
Q10 Z00 Q11 Z01 Q12
| | |
X10--Q20--X11--Q21--X12...
. . .
'''
def __init__(self, L):
'''Toric code of ``2 L**2`` physical qubits and distance ``L``.'''
self.L = L
self.Xflips = np.zeros((2*L,L), dtype=np.dtype('b')) # qubits where an X error occured
self.Zflips = np.zeros((2*L,L), dtype=np.dtype('b')) # qubits where a Z error occured
self._Xstab = np.empty((L,L), dtype=np.dtype('b'))
self._Zstab = np.empty((L,L), dtype=np.dtype('b'))
@property
def flatXflips2Zstab(self):
L = self.L
_flatXflips2Zstab = np.zeros((L**2, 2*L**2), dtype=np.dtype('b'))
for i, j in itertools.product(range(L),range(L)):
_flatXflips2Zstab[i*L+j, (2*i )%(2*L)*L+(j )%L] = 1
_flatXflips2Zstab[i*L+j, (2*i+1)%(2*L)*L+(j )%L] = 1
_flatXflips2Zstab[i*L+j, (2*i+2)%(2*L)*L+(j )%L] = 1
_flatXflips2Zstab[i*L+j, (2*i+1)%(2*L)*L+(j+1)%L] = 1
return _flatXflips2Zstab
@property
def flatZflips2Xstab(self):
L = self.L
_flatZflips2Xstab = np.zeros((L**2, 2*L**2), dtype=np.dtype('b'))
for i, j in itertools.product(range(L),range(L)):
_flatZflips2Xstab[(i+1)%L*L+(j+1)%L, (2*i+1)%(2*L)*L+(j+1)%L] = 1
_flatZflips2Xstab[(i+1)%L*L+(j+1)%L, (2*i+2)%(2*L)*L+(j )%L] = 1
_flatZflips2Xstab[(i+1)%L*L+(j+1)%L, (2*i+3)%(2*L)*L+(j+1)%L] = 1
_flatZflips2Xstab[(i+1)%L*L+(j+1)%L, (2*i+2)%(2*L)*L+(j+1)%L] = 1
return _flatZflips2Xstab
@property
def flatXflips2Zerr(self):
L = self.L
_flatXflips2Zerr = np.zeros((2, 2*L**2), dtype=np.dtype('b'))
for k in range(L):
_flatXflips2Zerr[0, (2*k+1)%(2*L)*L+(0 )%L] = 1
_flatXflips2Zerr[1, (2*0 )%(2*L)*L+(k )%L] = 1
return _flatXflips2Zerr
@property
def flatZflips2Xerr(self):
L = self.L
_flatZflips2Xerr = np.zeros((2, 2*L**2), dtype=np.dtype('b'))
for k in range(L):
_flatZflips2Xerr[0, (2*0+1)%(2*L)*L+(k )%L] = 1
_flatZflips2Xerr[1, (2*k )%(2*L)*L+(0 )%L] = 1
return _flatZflips2Xerr
def H(self, Z=True, X=False):
H = []
if Z:
H.append(self.flatXflips2Zstab)
if X:
H.append(self.flatZflips2Xstab)
H = scipy.linalg.block_diag(*H)
return H
def E(self, Z=True, X=False):
E = []
if Z:
E.append(self.flatXflips2Zerr)
if X:
E.append(self.flatZflips2Xerr)
E = scipy.linalg.block_diag(*E)
return E
def Zstabilizer(self):
'''Return all measurements of the Z stabilizer with ``true`` marking non-trivial.'''
stab = self._Zstab
X = self.Xflips
stab[0:-1,0:-1] = X[0:-2:2,0:-1:] ^ X[1:-1:2,0:-1:] ^ X[2::2,0:-1:] ^ X[1:-1:2,1::]
stab[ -1,0:-1] = X[ -2 ,0:-1:] ^ X[ -1 ,0:-1:] ^ X[ 0 ,0:-1:] ^ X[ -1 ,1::]
stab[0:-1, -1] = X[0:-2:2, -1 ] ^ X[1:-1:2, -1 ] ^ X[2::2, -1 ] ^ X[1:-1:2, 0]
stab[ -1, -1] = X[ -2 , -1 ] ^ X[ -1 , -1 ] ^ X[ 0 , -1 ] ^ X[ -1 , 0]
return stab
def Xstabilizer(self):
'''Return all measurements of the X stabilizer with ``true`` marking non-trivial.'''
stab = self._Xstab
Z = self.Zflips
stab[1:,1:] = Z[1:-2:2,1:] ^ Z[2:-1:2,0:-1] ^ Z[3::2,1:] ^ Z[2:-1:2,1:]
stab[0 ,1:] = Z[ -1 ,1:] ^ Z[ 0 ,0:-1] ^ Z[ 1 ,1:] ^ Z[ 0 ,1:]
stab[1:,0 ] = Z[1:-2:2,0 ] ^ Z[2:-1:2, -1] ^ Z[3::2,0 ] ^ Z[2:-1:2,0 ]
stab[0 ,0 ] = Z[ -1 ,0 ] ^ Z[ 0 , -1] ^ Z[ 1 ,0 ] ^ Z[ 0 ,0 ]
return stab
def _plot_flips(self, s, flips_yx, label):
'''Given an array of yx coordiante plot qubit flips on subplot ``s``.'''
if not len(flips_yx): return
y, x = flips_yx
x = x.astype(float)
x[y%2==0] += 0.5
x = np.concatenate([x, x-self.L, x])
y = np.concatenate([y/2., y/2., y/2.-self.L])
s.plot(x, y,'o', ms=50/self.L, label=label)
def plot(self, legend=True, stabs=True):
'''Plot the state of the system (including stabilizers).'''
f = plt.figure(figsize=(5,5))
s = f.add_subplot(1,1,1)
self._plot_legend = legend
self._plot_flips(s, self.Xflips.nonzero(), label='X')
self._plot_flips(s, self.Zflips.nonzero(), label='Z')
self._plot_flips(s, (self.Xflips & self.Zflips).nonzero(), label='Y')
if stabs:
y, x = self.Zstabilizer().nonzero()
x = np.concatenate([x+0.5, x+0.5-self.L, x+0.5, x+0.5-self.L])
y = np.concatenate([y+0.5, y+0.5, y+0.5-self.L, y+0.5-self.L])
s.plot(x,y,'s', mew=0, ms=190/self.L, label='plaq')
y, x = self.Xstabilizer().nonzero()
s.plot(x, y, '+', mew=100/self.L, ms=200/self.L, label='star')
s.set_xticks(range(0,self.L))
s.set_yticks(range(0,self.L))
s.set_xlim(-0.6,self.L-0.4)
s.set_ylim(-0.6,self.L-0.4)
s.invert_yaxis()
for tic in s.xaxis.get_major_ticks():
tic.tick1On = tic.tick2On = False
tic.label1On = tic.label2On = False
for tic in s.yaxis.get_major_ticks():
tic.tick1On = tic.tick2On = False
tic.label1On = tic.label2On = False
s.grid()
if legend: s.legend()
return f, s
def _wgraph(self, operator):
g = nx.Graph()
if operator == 'Z':
nodes = zip(*self.Zstabilizer().nonzero())
elif operator == 'X':
nodes = zip(*self.Xstabilizer().nonzero())
def dist(node1, node2):
dy = abs(node1[0]-node2[0])
dy = min(self.L-dy, dy)
dx = abs(node1[1]-node2[1])
dx = min(self.L-dx, dx)
return dx+dy
g.add_weighted_edges_from((node1, node2, -dist(node1, node2))
for node1, node2 in itertools.combinations(nodes, 2))
return g
def Zwgraph(self):
'''The distance graph for non-trivial Z stabilizer.'''
return self._wgraph('Z')
def Xwgraph(self):
'''The distance graph for non-trivial X stabilizer.'''
return self._wgraph('X')
def Zcorrections(self):
'''Qubits on which to apply Z operator to fix the X stabilizer.'''
L = self.L
graph = self.Xwgraph()
matches = {tuple(sorted(_)) for _ in
nx.max_weight_matching(graph, maxcardinality=True).items()}
qubits = set()
for (y1, x1), (y2, x2) in matches:
ym, yM = 2*min(y1, y2), 2*max(y1, y2)
if yM-ym > L:
ym, yM = yM, ym+2*L
horizontal = yM if (x2-x1)*(y2-y1)<0 else ym
else:
horizontal = ym if (x2-x1)*(y2-y1)<0 else yM
xm, xM = min(x1, x2), max(x1, x2)
if xM-xm > L/2:
xm, xM = xM, xm+L
vertical = xM
else:
vertical = xm
qubits.update((horizontal%(2*L), _%L) for _ in range(xm, xM))
qubits.update(((_+1)%(2*L), vertical%L) for _ in range(ym, yM, 2))
return matches, qubits
def Xcorrections(self):
'''Qubits on which to apply X operator to fix the Z stabilizer.'''
L = self.L
graph = self.Zwgraph()
matches = {tuple(sorted(_)) for _ in
nx.max_weight_matching(graph, maxcardinality=True).items()}
qubits = set()
for (y1, x1), (y2, x2) in matches:
ym, yM = 2*min(y1, y2), 2*max(y1, y2)
if yM-ym > L:
ym, yM = yM, ym+2*L
horizontal = yM if (x2-x1)*(y2-y1)<0 else ym
else:
horizontal = ym if (x2-x1)*(y2-y1)<0 else yM
xm, xM = min(x1, x2), max(x1, x2)
if xM-xm > L/2:
xm, xM = xM, xm+L
vertical = xM
else:
vertical = xm
qubits.update(((horizontal+1)%(2*L), (_+1)%L) for _ in range(xm, xM))
qubits.update(((_+2)%(2*L), vertical%L) for _ in range(ym, yM, 2))
return matches, qubits
def plot_corrections(self, s, plot_matches=False):
'''Add to subplot ``s`` the corrections that have to be performed according to min. weight matching.'''
def stitch_torus(y1, y2):
if abs(y1-y2)>L/2:
return (y1+L, y2-L) if y1<y2 else (y1-L, y2+L)
return y1, y2
def shorten(y1,y2):
if y1==y2:
return y1, y2
return (y1+0.15, y2-0.15) if y1<y2 else (y1-0.15, y2+0.15)
S = shorten
matches, qubits = self.Xcorrections()
L = self.L
if matches:
if plot_matches:
for ((y1,x1),(y2,x2)) in np.array(list(matches))+0.5:
Y1, Y2 = stitch_torus(y1,y2)
X1, X2 = stitch_torus(x1,x2)
s.plot(S(x1,X2), S(y1,Y2), 'k-', lw=20/self.L)
s.plot(S(X1,x2), S(Y1,y2), 'k-', lw=20/self.L)
y, x = np.array(list(qubits)).T
cX = np.array([y,x])
else:
cX = np.array([[],[]])
matches, qubits = self.Zcorrections()
if matches:
if plot_matches:
matches = np.array(list(matches))
for ((y1,x1),(y2,x2)) in matches:
Y1, Y2 = stitch_torus(y1,y2)
X1, X2 = stitch_torus(x1,x2)
s.plot(S(x1,X2), S(y1,Y2), 'k-', lw=20/self.L)
s.plot(S(X1,x2), S(Y1,y2), 'k-', lw=20/self.L)
y, x = np.array(list(qubits)).T
cZ = np.array([y,x])
else:
cZ = np.array([[],[]])
self._plot_flips(s, cX, label='cX')
self._plot_flips(s, cZ, label='cZ')
cY = np.array(list(set(zip(*cZ)).intersection(set(zip(*cX))))).T
self._plot_flips(s, cY, label='cY')
if self._plot_legend: s.legend()
def add_errors(self, p): #TODO probably faster with numba
'''Add X, Y, Z errors at rate ``(1-p)/3`` each, e.g. depolarization at ``1-p``.'''
rand = np.random.rand(self.L*2, self.L)
q = (1-p)/3
x_flips = rand< q
z_flips = (q<=rand) & (rand<2*q)
both = (2*q<=rand) & (rand<3*q)
self.Xflips ^= x_flips
self.Xflips ^= both
self.Zflips ^= z_flips
self.Zflips ^= both
def perform_perfect_correction(self):
self.Xflips[list(zip(*self.Xcorrections()[1]))] ^= True
self.Zflips[list(zip(*self.Zcorrections()[1]))] ^= True
def logical_errors(self):
z1 = np.logical_xor.reduce(self.Xflips[1::2,0])
z2 = np.logical_xor.reduce(self.Xflips[0,:])
x1 = np.logical_xor.reduce(self.Zflips[1,:])
x2 = np.logical_xor.reduce(self.Zflips[0::2,0])
return z1, z2, x1, x2
def step_error_and_perfect_correction(self, p):
self.add_errors(p)
self.perform_perfect_correction()
return not any(self.logical_errors())
@staticmethod
def assert_correctness():
'''A bunch of functionality is implemented in multiple ways - here we assert they are equivalent.'''
c = 0
while c<1000:
t = ToricCode(10)
t.add_errors(0.750)
# Computing stabilizers and measurements with linear algebra and with explicit elementwise ops.
stabz = t.Zstabilizer().ravel()
stabzm = t.flatXflips2Zstab.dot(t.Xflips.ravel()) % 2
stabx = t.Xstabilizer().ravel()
stabxm = t.flatZflips2Xstab.dot(t.Zflips.ravel()) % 2
errz = t.logical_errors()[0:2]
errx = t.logical_errors()[2:4]
errzm = t.flatXflips2Zerr.dot(t.Xflips.ravel()) % 2
errxm = t.flatZflips2Xerr.dot(t.Zflips.ravel()) % 2
assert np.all(stabz==stabzm)
assert np.all(stabx==stabxm)
assert np.all(errz==errzm)
assert np.all(errx==errxm)
c += 1
if not c%100:
print('\r',c,end='',flush=True)
def sample(L, p, samples=1000, cutoff=200):
'''Repeated single shot corrections for the toric code with perfect measurements.
Return an array of nb of cycles until failure for a given L and p.'''
results = []
for _ in trange(samples, desc='%d; %.2f'%(L,p), leave=False):
code = ToricCode(L)
i = 1
while code.step_error_and_perfect_correction(p) and i<cutoff:
i+=1
results.append(i)
return np.array(results, dtype=int)
def stat_estimator(samples, cutoff=200, confidence=0.99):
'''Max Likelihood Estimator for censored exponential distribution.
See "Estimation of Parameters of Truncated or Censored Exponential Distributions",
Walter L. Deemer and David F. Votaw'''
samples = samples.astype(float)
n = (samples<cutoff).sum()
N = len(samples)
estimate = n/samples.sum()
y_conf = stats.norm.ppf((1+confidence)/2)
y = lambda c: N**0.5*(estimate/c-1)*(1-np.exp(-c*cutoff))**0.5
low = optimize.root(lambda c: y(c)-y_conf, estimate)
high = optimize.root(lambda c: y(c)+y_conf, estimate)
if not (low.success and high.success):
raise RuntimeError('Could not find confidence interval for the given samples!')
return np.array([1/estimate, 1/high.x, 1/low.x])
def find_threshold(Lsmall=3, Llarge=5, p=0.8, high=1, low=0.79, samples=1000, logfile=None):
'''Use binary search (between two sizes of codes) to find the threshold for the toric code.'''
ps = []
samples_small = []
samples_large = []
def step(p):
ps.append(p)
samples_small.append(stat_estimator(sample(Lsmall, p, samples=samples)))
samples_large.append(stat_estimator(sample(Llarge, p, samples=samples)))
def intersection(xs, y1s, y2s, log=True):
d = np.linalg.det
if log:
y1s, y2s = np.log([y1s,y2s])
ones = np.array([1.,1.])
dx = d([xs , ones])
dy1 = d([y1s, ones])
dy2 = d([y2s, ones])
x = (d([xs, y1s])-d([xs, y2s])) / (dy2-dy1)
y = (d([xs, y1s])*dy2 - d([xs, y2s])*dy1) / dx / (dy2-dy1)
if log:
y = np.exp(y)
return x, y
step(p)
if logfile:
with open(logfile, 'w') as f:
ss = samples_small[0]
sl = samples_large[0]
f.write(str((np.vstack([ps, [ss[0]], [ss[1]-ss[0]], [ss[2]-ss[0]], [sl[0]], [sl[1]-sl[0]], [sl[2]-sl[0]]]), (ss[0]+sl[0])/2, ps[0])))
else:
f = plt.figure()
s = f.add_subplot(1,1,1)
while not (samples_large[-1][1]<samples_small[-1][0]<samples_large[-1][2]
or samples_small[-1][1]<samples_large[-1][0]<samples_small[-1][2]):
if samples_small[-1][0]<samples_large[-1][0]:
p, high = low+(ps[-1]-low)/2, p
else:
p, low = ps[-1]+(high-ps[-1])/2, p
step(p)
_argsort = np.argsort(ps)
_ps = np.array(ps)[_argsort]
_ss = np.array(samples_small)
_small = _ss[_argsort,0]
_small_err = np.abs(_ss[_argsort,1:].T - _small)
_sl = np.array(samples_large)
_large = _sl[_argsort,0]
_large_err = np.abs(_sl[_argsort,1:].T - _large)
ix, iy = intersection(ps[-2:],[_[0] for _ in samples_small[-2:]],[_[0] for _ in samples_large[-2:]])
if logfile:
with open(logfile, 'w') as f:
f.write(str((np.vstack([_ps, _small, _small_err, _large, _large_err]), iy, ix)))
else:
s.clear()
s.errorbar(_ps,_small,yerr=_small_err,alpha=0.6,label=str(Lsmall))
s.errorbar(_ps,_large,yerr=_large_err,alpha=0.6,label=str(Llarge))
s.plot([ix],[iy],'ro',alpha=0.5)
s.set_title('intersection at p = %f'%ix)
s.set_yscale('log')
display.clear_output(wait=True)
display.display(f)
return ps, samples_small, samples_large
def generate_training_data(l=3, p=0.9, train_size=2000000, test_size=100000): # TODO duplicated code with data_generator in neural.py
'''Generate errors and corresponding stabilizers at a given `p` for the toric code.
The samples with no errors are skipped.
It counts and prints out how many of the errors are fixed by MWPM.
returns: (Zstab_x_train, Zstab_y_train, Xstab_x_train, Xstab_y_train,
Zstab_x_test, Zstab_y_test, Xstab_x_test, Xstab_y_test)'''
Zstab_x_train = np.zeros((train_size, l**2))
Zstab_y_train = np.zeros((train_size, 2*l**2))
Xstab_x_train = np.zeros((train_size, l**2))
Xstab_y_train = np.zeros((train_size, 2*l**2))
for i in trange(train_size):
t = ToricCode(l)
t.add_errors(p)
while not (np.any(t.Xflips) or np.any(t.Zflips)):
t = ToricCode(l)
t.add_errors(p)
Zstab_x_train[i,:] = t.Zstabilizer().ravel()
Zstab_y_train[i,:] = t.Xflips.ravel()
Xstab_x_train[i,:] = t.Xstabilizer().ravel()
Xstab_y_train[i,:] = t.Zflips.ravel()
Zstab_x_test = np.zeros((test_size, l**2))
Zstab_y_test = np.zeros((test_size, 2*l**2))
Xstab_x_test = np.zeros((test_size, l**2))
Xstab_y_test = np.zeros((test_size, 2*l**2))
errors = xstab_errors = zstab_errors = 0
for i in trange(test_size):
t = ToricCode(l)
t.add_errors(p)
while not (np.any(t.Xflips) or np.any(t.Zflips)):
t = ToricCode(l)
t.add_errors(p)
Zstab_x_test[i,:] = t.Zstabilizer().ravel()
Zstab_y_test[i,:] = t.Xflips.ravel()
Xstab_x_test[i,:] = t.Xstabilizer().ravel()
Xstab_y_test[i,:] = t.Zflips.ravel()
t.perform_perfect_correction()
errors += any(t.logical_errors())
xstab_errors += any(t.logical_errors()[0:2])
zstab_errors += any(t.logical_errors()[2:4])
decoded_fraction = 1 - errors/test_size
xstab_decoded_fraction = 1 - xstab_errors/test_size
zstab_decoded_fraction = 1 - zstab_errors/test_size
print('decoded_fraction, zstab_decoded_fraction, xstab_decoded_fraction =')
print(decoded_fraction, zstab_decoded_fraction, xstab_decoded_fraction)
return ((Zstab_x_train, Zstab_y_train, Xstab_x_train, Xstab_y_train,
Zstab_x_test, Zstab_y_test, Xstab_x_test, Xstab_y_test),
(decoded_fraction, zstab_decoded_fraction, xstab_decoded_fraction))