-
Notifications
You must be signed in to change notification settings - Fork 392
/
Copy pathmake_wordvectors.py
72 lines (59 loc) · 2.56 KB
/
make_wordvectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# coding: utf-8
#!/usr/bin/python2
import nltk
import os
import codecs
import argparse
import numpy as np
# arguments setting
parser = argparse.ArgumentParser()
parser.add_argument('--lcode', help='ISO 639-1 code of target language. See `lcodes.txt`.')
parser.add_argument('--vector_size', type=int, default=100, help='the size of a word vector')
parser.add_argument('--window_size', type=int, default=5, help='the maximum distance between the current and predicted word within a sentence.')
parser.add_argument('--vocab_size', type=int, default=10000, help='the maximum vocabulary size')
parser.add_argument('--num_negative', type=int, default=5, help='the int for negative specifies how many “noise words” should be drawn')
args = parser.parse_args()
lcode = args.lcode
vector_size = args.vector_size
window_size = args.window_size
vocab_size = args.vocab_size
num_negative = args.num_negative
def get_min_count(sents):
'''
Args:
sents: A list of lists. E.g., [["I", "am", "a", "boy", "."], ["You", "are", "a", "girl", "."]]
Returns:
min_count: A uint. Should be set as the parameter value of word2vec `min_count`.
'''
global vocab_size
from itertools import chain
fdist = nltk.FreqDist(chain.from_iterable(sents))
min_count = fdist.most_common(vocab_size)[-1][1] # the count of the the top-kth word
return min_count
def make_wordvectors():
global lcode
import gensim # In case you have difficulties installing gensim, you need to consider installing conda.
import cPickle as pickle
print "Making sentences as list..."
sents = []
with codecs.open('data/{}.txt'.format(lcode), 'r', 'utf-8') as fin:
while 1:
line = fin.readline()
if not line: break
words = line.split()
sents.append(words)
print "Making word vectors..."
min_count = get_min_count(sents)
model = gensim.models.Word2Vec(sents, size=vector_size, min_count=min_count,
negative=num_negative,
window=window_size)
model.save('data/{}.bin'.format(lcode))
# Save to file
with codecs.open('data/{}.tsv'.format(lcode), 'w', 'utf-8') as fout:
for i, word in enumerate(model.index2word):
fout.write(u"{}\t{}\t{}\n".format(str(i), word.encode('utf8').decode('utf8'),
np.array_str(model[word])
))
if __name__ == "__main__":
make_wordvectors()
print "Done"