The LLaVA-Video models are 7/72B parameter models trained on LLaVA-Video-178K and LLaVA-OneVision Dataset, based on Qwen2 language model with a context window of 32K tokens.
We provide the simple generation process for using our model. For more details, you could refer to Github.
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
warnings.filterwarnings("ignore")
def load_video(self, video_path, max_frames_num,fps=1,force_sample=False):
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3))
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
frame_time = [i/fps for i in frame_idx]
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
spare_frames = vr.get_batch(frame_idx).asnumpy()
# import pdb;pdb.set_trace()
return spare_frames,frame_time,video_time
pretrained = "lmms-lab/LLaVA-Video-7B-Qwen2"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args
model.eval()
video_path = "XXXX"
max_frames_num = "64"
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().bfloat16()
video = [video]
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
time_instruciton = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}.Please answer the following questions related to this video."
question = DEFAULT_IMAGE_TOKEN + f"{time_instruciton}\nPlease describe this video in detail."
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
input_ids,
images=video,
modalities= ["video"],
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)
[Scripts]: Start training models on your single-image/multi-image/video data.
We use the lmms-eval toolkit to evaluate our models. Ensure you have installed the LLaVA-NeXT model files as per the instructions in the main README.md.
Install lmms-eval:
pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git
Our models' evaluation results can be fully reproduced using the lmms-eval toolkit. After installing lmms-eval and llava, you can run the evaluation using the following commands.
Note: These commands require flash-attn. If you prefer not to install it, disable flash-attn by adding attn_implementation=None
to the --model_args
parameter.
Important: Different torch versions may cause slight variations in results. By default in lmms-eval
, the requirement for torch version is set to the latest version. In llava
repo, the torch version is set to 2.1.2
. Torch version 2.1.2
would be stable for both llava
and lmms-eval
We recommend the developers and researchers to thoroughly evaluate the models on more datasets to get a comprehensive understanding of their performance in different scenarios. So we provide a comprehensive list of datasets for evaluation, and welcome to incoporate more evaluation tasks. Please refer to the lmms-eval for more details.
# video tasks
accelerate launch --num_processes=8 \
-m lmms_eval \
--model llava_vid \
--model_args pretrained=lmms-lab/LLaVA-Video-7B-Qwen2,conv_template=qwen_1_5,max_frames_num=64,mm_spatial_pool_mode=average \
--tasks activitynetqa,videochatgpt,nextqa_mc_test,egoschema,video_dc499,videmme,videomme_w_subtitle,perceptiontest_val_mc \
--batch_size 1 \
--log_samples \
--log_samples_suffix llava_vid \
--output_path ./logs/