-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
771 lines (712 loc) · 30.9 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
#include "Defs/defs.h"
#include "../3rdParty/tinyXML/tinyxml2.h"
#include "RobotModelMat/Messor2Robot.h"
#include "RobotModelMat/AnymalRobot.h"
#include "CollisionDetection/CollisionDetectionColdet.h"
#ifdef BUILD_WITH_FCL
#include "CollisionDetection/CollisionDetectionFCL.h"
#endif
#include "Regression/GaussianMixture.h"
#include <fstream>
#include <iostream>
#include <thread>
using namespace std;
// plot vertical cross section
void plotVerticalCrossSectionKM(size_t legNo, std::string filename, walkers::Robot* robotMat){
std::ofstream mfile;
mfile.open (filename);
mfile << "close all\nclear all\nX = [";
/// manualy set parameters
double x = -0.1;
double z=-1.0;
double incX=0.01;
double incZ=0.01;
int ptsNo = 200;
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << x+i*incX << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "Z = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << z+j*incZ << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "W = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
walkers::Mat34 linkPose(walkers::Mat34::Identity());
linkPose(0,3)=x+i*incX;
linkPose(2,3)=z+j*incZ;
if (robotMat->isInsideWorkspaceLeg((int)legNo, linkPose)){
bool isMotionPossible;
std::vector<double> legConfTmp = robotMat->inverseKinematicLeg(legNo,isMotionPossible, linkPose);
double margin = robotMat->kinematicMargin(legNo,legConfTmp);
mfile << margin << ", ";
}
else
mfile << -1 << ", ";
// std::cout << j << "//" << ptsNo <<"\n";
}
mfile << ";\n";
if (i%10==0)
std::cout << i << "/" << ptsNo <<"\n";
}
mfile << "];\n";
mfile << "surf(X,Z,W);\nxlabel('x[m]');\nylabel('z[m]')";
mfile.close();
}
// plot vertical cross section
void plotHorizontalCrossSectionKM(size_t legNo, std::string filename, walkers::Robot* robotMat){
///plot kinematic margin -- horizontal
std::ofstream mfile;
mfile.open (filename);
mfile << "close all\nclear all\nX = [";
/// manualy set parameters
double x = -1.1;
double y = -1.4;
double incX=0.01;
double incY=0.01;
double ptsNo = 300;
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << x+i*incX << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "Y = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << y+j*incY << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "W = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
walkers::Mat34 linkPose(walkers::Mat34::Identity());
linkPose(0,3)=x+i*incX;
linkPose(1,3)=y+j*incY;
if (robotMat->isInsideWorkspaceLeg((int)legNo, linkPose)){
bool isMotionPossible;
std::vector<double> legConfTmp = robotMat->inverseKinematicLeg(legNo, isMotionPossible, linkPose);
double margin = robotMat->kinematicMargin(legNo,legConfTmp);
mfile << margin << ", ";
}
else
mfile << -1 << ", ";
if (j%10==0)
std::cout << j << "/" << ptsNo <<"\n";
}
mfile << ";\n";
if (i%10==0)
std::cout << i << "/" << ptsNo <<"\n";
}
mfile << "];\n";
mfile << "surf(X,Y,W);\nxlabel('x[m]');\nylabel('y[m]')";
mfile.close();
}
// plot vertical cross section
void plotVerticalCrossSectionOutKM(size_t legNo, std::string filename, walkers::Robot* robotMat){
std::ofstream mfile;
mfile.open (filename);
mfile << "close all\nclear all\nX = [";
/// manualy set parameters
double x = -1.0;
double z=-1.2;
double incX=0.024;
double incZ=0.024;
int ptsNo = 100;
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << x+i*incX << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "Z = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << z+j*incZ << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "W = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
walkers::Mat34 linkPose(walkers::Mat34::Identity());
linkPose(0,3)=x+i*incX;
linkPose(2,3)=z+j*incZ;
double dist = robotMat->distance2workspace((int)legNo, linkPose);
mfile << dist << ", ";
if (j%10==0)
std::cout << "j: " << j << "/" << ptsNo <<"\n";
}
mfile << ";\n";
if (i%10==0)
std::cout << "i: " << i << "/" << ptsNo <<"\n";
}
mfile << "];\n";
mfile << "surf(X,Z,W);\nxlabel('x[m]');\nylabel('z[m]')";
mfile.close();
}
// plot vertical cross section
void plotHorizontalCrossSectionOutKM(size_t legNo, std::string filename, walkers::Robot* robotMat){
///plot kinematic margin -- horizontal
std::ofstream mfile;
mfile.open (filename);
mfile << "close all\nclear all\nX = [";
/// manualy set parameters
double x = -1.0;
double y = -1.2;
double incX=0.024;
double incY=0.024;
double ptsNo = 100;
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << x+i*incX << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "Y = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << y+j*incY << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "W = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
walkers::Mat34 linkPose(walkers::Mat34::Identity());
linkPose(0,3)=x+i*incX;
linkPose(1,3)=y+j*incY;
double dist = robotMat->distance2workspace((int)legNo, linkPose);
mfile << dist << ", ";
if (j%10==0)
std::cout << "j: " << j << "/" << ptsNo <<"\n";
}
mfile << ";\n";
if (i%10==0)
std::cout << "i: " << i << "/" << ptsNo <<"\n";
}
mfile << "];\n";
mfile << "surf(X,Y,W);\nxlabel('x[m]');\nylabel('y[m]')";
mfile.close();
}
///plot kinematic margin -- vertical (GM)
void plotKinematicMarginVertGM(size_t legNo, const std::string& filename, walkers::Robot* robotMat, regression::Regression* gm){
std::ofstream mfile;
mfile.open (filename);
mfile << "close all\nclear all\nX = [";
/// manualy set parameters
double x = -0.1;
double z=-1.0;
double incX=0.01;
double incZ=0.01;
int ptsNo = 200;
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << x+i*incX << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "Z = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << z+j*incZ << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "W = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
walkers::Mat34 linkPose(walkers::Mat34::Identity());
linkPose(0,3)=x+i*incX;
linkPose(2,3)=z+j*incZ;
if (robotMat->isInsideWorkspaceLeg((int)legNo, linkPose)){
bool isMotionPossible;
std::vector<double> legConfig = robotMat->inverseKinematicLeg(legNo,isMotionPossible, linkPose);
Eigen::MatrixXd input(1,3);
input(0,0)=legConfig[0]; input(0,1)=legConfig[1]; input(0,2)=legConfig[2];
double margin = gm->computeOutput(input,0);
if (margin<0)
mfile << 0 << ", ";
else
mfile << margin << ", ";
}
else
mfile << 0 << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "surf(X,Z,W);\nxlabel('x[m]');\nylabel('z[m]')";
mfile.close();
}
///plot kinematic margin -- vertical (GM)
void plotKinematicMarginHorizGM(size_t legNo, const std::string& filename, walkers::Robot* robotMat, regression::Regression* gm){
std::ofstream mfile;
mfile.open (filename);
mfile << "close all\nclear all\nX = [";
/// manualy set parameters
double x = -1.1;
double y = -1.4;
double incX=0.01;
double incY=0.01;
double ptsNo = 300;
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << x+i*incX << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "Y = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << y+j*incY << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "W = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
walkers::Mat34 linkPose(walkers::Mat34::Identity());
linkPose(0,3)=x+i*incX;
linkPose(1,3)=y+j*incY;
if (robotMat->isInsideWorkspaceLeg((int)legNo, linkPose)){
bool isMotionPossible;
std::vector<double> legConfig = robotMat->inverseKinematicLeg(legNo, isMotionPossible, linkPose);
Eigen::MatrixXd input(1,3);
input(0,0)=legConfig[0]; input(0,1)=legConfig[1]; input(0,2)=legConfig[2];
double margin = gm->computeOutput(input,0);
if (margin<0)
mfile << 0 << ", ";
else
mfile << margin << ", ";
}
else
mfile << 0.0 << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "surf(X,Y,W);\nxlabel('x[m]');\nylabel('y[m]')";
mfile.close();
}
///plot kinematic margin -- vertical (GM)
void plotOutKinematicMarginVertGM(const std::string& filename, regression::Regression* gm){
std::ofstream mfile;
mfile.open (filename);
mfile << "close all\nclear all\nX = [";
/// manualy set parameters
double x = -1.2;
double z=-1.2;
double incX=0.012;
double incZ=0.012;
int ptsNo = 200;
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << x+i*incX << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "Z = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << z+j*incZ << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "W = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
walkers::Mat34 linkPose(walkers::Mat34::Identity());
linkPose(0,3)=x+i*incX;
linkPose(2,3)=z+j*incZ;
Eigen::MatrixXd input(1,3);
input(0,0)=linkPose(0,3); input(0,1)=linkPose(1,3); input(0,2)=linkPose(2,3);
double margin = gm->computeOutput(input,0);
mfile << margin << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "surf(X,Z,W);\nxlabel('x[m]');\nylabel('z[m]')";
mfile.close();
}
///plot kinematic margin -- vertical (GM)
void plotOutKinematicMarginHorizGM(const std::string& filename, regression::Regression* gm){
std::ofstream mfile;
mfile.open (filename);
mfile << "close all\nclear all\nX = [";
/// manualy set parameters
double x = -1.2;
double y = -1.2;
double incX=0.012;
double incY=0.012;
double ptsNo = 200;
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << x+i*incX << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "Y = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
mfile << y+j*incY << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "W = [";
for (int i=0;i<ptsNo;i++){
for (int j=0;j<ptsNo;j++){
walkers::Mat34 linkPose(walkers::Mat34::Identity());
linkPose(0,3)=x+i*incX;
linkPose(1,3)=y+j*incY;
Eigen::MatrixXd input(1,3);
input(0,0)=linkPose(0,3); input(0,1)=linkPose(1,3); input(0,2)=linkPose(2,3);
double margin = gm->computeOutput(input,0);
mfile << margin << ", ";
}
mfile << ";\n";
}
mfile << "];\n";
mfile << "surf(X,Y,W);\nxlabel('x[m]');\nylabel('y[m]')";
mfile.close();
}
void generateTrainingSamples(size_t legNo, size_t trainingSamples, std::string filename, walkers::Robot* robotMat){
std::ofstream trainFile;
trainFile.open (filename);
std::vector<std::pair<double,double>> limits = robotMat->getJointLimits(legNo);
std::srand((unsigned int)time(NULL));
auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
std::mt19937 mt(seed);
std::vector<std::unique_ptr<std::uniform_real_distribution<double>>> dists(limits.size());
for (size_t jointNo=0;jointNo<limits.size();jointNo++){
dists[jointNo].reset(new std::uniform_real_distribution<double>(limits[jointNo].first, limits[jointNo].second));
}
for (size_t sampleNo=0;sampleNo<trainingSamples;sampleNo++){
std::vector<double> legConfTmp;
for (size_t jointNo=0;jointNo<limits.size();jointNo++){
legConfTmp.push_back((*dists[jointNo])(mt));
trainFile << legConfTmp[jointNo] << ",";
}
double margin = robotMat->kinematicMargin(legNo,legConfTmp);
if (margin>0)
trainFile << "\n" << margin << "\n";
else
trainFile << "\n" << 0 << "\n";
std::cout << "sample no " << sampleNo << "/ " << trainingSamples << "\n";
}
std::cout << "leg No " << legNo << "\n";
trainFile.close();
}
void generateTrainingSamplesOutWorkspace(size_t legNo, size_t trainingSamples, std::string filename, walkers::Robot* robotMat){
std::ofstream trainFile;
trainFile.open (filename);
std::srand((unsigned int)time(NULL));
auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
std::mt19937 mt(seed);
std::uniform_real_distribution<double> distXYZ(-1.2, 1.2);
for (size_t sampleNo=0;sampleNo<trainingSamples;sampleNo++){
std::vector<double> footPosition(3,0);
for (auto& pos : footPosition){
pos = distXYZ(mt);
}
walkers::Vec6 posVec;
posVec(0) = footPosition[0]; posVec(1) = footPosition[1]; posVec(2) = footPosition[2];
posVec(3) = 0; posVec(4) = 0; posVec(5) = 0;
walkers::Mat34 footPoseTmp = walkers::fromTranslRPY(posVec);
for (size_t dimNo=0;dimNo<3;dimNo++){
trainFile << footPoseTmp(dimNo,3) << ",";
}
double dist2work = robotMat->distance2workspace(legNo,footPoseTmp);
if (dist2work>0)
trainFile << "\n" << dist2work << "\n";
else {
double kinemMargin = robotMat->kinematicMargin(legNo,footPoseTmp);
trainFile << "\n" << -kinemMargin << "\n";
}
}
std::cout << "leg No " << legNo << "\n";
trainFile.close();
}
/// generate training samples for collision model
void generateTrainingSamplesCollision(size_t legNo, size_t trainingSamples, std::string filename, walkers::Robot* robotMat){
std::ofstream trainFile;
trainFile.open (filename);
std::vector<std::pair<double,double>> limits = robotMat->getJointLimits(legNo);
std::srand((unsigned int)time(NULL));
auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
std::mt19937 mt(seed);
std::vector<std::unique_ptr<std::uniform_real_distribution<double>>> dists(limits.size());
for (size_t jointNo=0;jointNo<limits.size();jointNo++){
dists[jointNo].reset(new std::uniform_real_distribution<double>(limits[jointNo].first, limits[jointNo].second));
}
for (size_t sampleNo=0;sampleNo<trainingSamples;sampleNo++){
bool isColl;
std::vector<double> legConfTmp(limits.size(), 0.0);
if (sampleNo%4==0) {//we need more samples with collisions
bool success = false;
while (!success){
for (size_t jointNo=0;jointNo<limits.size();jointNo++){
legConfTmp[jointNo] = (*dists[jointNo])(mt);
}
isColl = robotMat->checkCollision(legNo, legConfTmp);
if (isColl) success = true;
}
}
else{
for (size_t jointNo=0;jointNo<limits.size();jointNo++){
legConfTmp[jointNo] = (*dists[jointNo])(mt);
}
isColl = robotMat->checkCollision(legNo, legConfTmp);
}
for (size_t jointNo=0;jointNo<limits.size();jointNo++){
trainFile << legConfTmp[jointNo] << ",";
}
if (isColl)
trainFile << "\n" << 1 << "\n";
else
trainFile << "\n" << 0 << "\n";
if (sampleNo%1000==0)
std::cout << sampleNo << "/" << trainingSamples << "\n";
}
trainFile.close();
}
/// generate training samples for collision model
void generateTrainingSamplesNeighCollision(size_t leg1No, size_t leg2No, size_t trainingSamples, std::string filename, walkers::Robot* robotMat){
std::ofstream trainFile;
trainFile.open (filename);
std::vector<std::pair<double,double>> limits1 = robotMat->getJointLimits(leg1No);
std::vector<std::pair<double,double>> limits2 = robotMat->getJointLimits(leg2No);
std::srand((unsigned int)time(NULL));
auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
std::mt19937 mt(seed);
std::vector<std::unique_ptr<std::uniform_real_distribution<double>>> dists1(limits1.size());
std::vector<std::unique_ptr<std::uniform_real_distribution<double>>> dists2(limits2.size());
for (size_t jointNo=0;jointNo<limits1.size();jointNo++){
std::cout << "limits1 " << jointNo << ": " << limits1[jointNo].first << ", " << limits1[jointNo].second << "\n";
std::cout << "limits2 " << jointNo << ": " << limits2[jointNo].first << ", " << limits2[jointNo].second << "\n";
dists1[jointNo].reset(new std::uniform_real_distribution<double>(limits1[jointNo].first, limits1[jointNo].second));
dists2[jointNo].reset(new std::uniform_real_distribution<double>(limits2[jointNo].first, limits2[jointNo].second));
}
for (size_t sampleNo=0;sampleNo<trainingSamples;sampleNo++){
std::vector<double> legConf1;
std::vector<double> legConf2;
for (size_t jointNo=0;jointNo<limits1.size();jointNo++){
legConf1.push_back((*dists1[jointNo])(mt));
}
for (size_t jointNo=0;jointNo<limits2.size();jointNo++){
legConf2.push_back((*dists2[jointNo])(mt));
}
double margin1 = robotMat->kinematicMargin(leg1No, legConf1);
double margin2 = robotMat->kinematicMargin(leg2No, legConf2);
if (margin1<0||margin2<0){
sampleNo--;
}
else{
walkers::Mat34 foot1 = robotMat->forwardKinematic(leg1No, legConf1);
walkers::Mat34 foot2 = robotMat->forwardKinematic(leg2No, legConf2);
bool isColl = robotMat->checkCollision(leg1No, legConf1, leg2No, legConf2);
for (size_t dim=0;dim<3;dim++){
trainFile << foot1(dim,3)-foot2(dim,3) << ",";
}
// for (size_t dim=0;dim<3;dim++){
// trainFile << foot2(dim,3) << ",";
// }
if (isColl)
trainFile << "\n" << 1 << "\n";
else
trainFile << "\n" << 0 << "\n";
if (sampleNo%100==0)
std::cout << sampleNo << "/" << trainingSamples << "\n";
}
}
std::cout << "leg No " << leg1No << "->" << leg2No << "\n";
trainFile.close();
}
int main(void) {
try {
setlocale(LC_NUMERIC,"C");
tinyxml2::XMLDocument config;
config.LoadFile("../../resources/configGlobal.xml");
if (config.ErrorID())
std::cout << "unable to load config file.\n";
std::string robotConfig(config.FirstChildElement( "Robot" )->FirstChildElement("config")->GetText());
std::string robotType(config.FirstChildElement( "Robot" )->FirstChildElement("type")->GetText());
std::string coldetConfig(config.FirstChildElement( "CollisionDetection" )->FirstChildElement("config")->GetText());
std::string coldetType(config.FirstChildElement( "CollisionDetection" )->FirstChildElement("type")->GetText());
std::string regressionConfig(config.FirstChildElement( "Regression" )->FirstChildElement("config")->GetText());
std::string regressionType(config.FirstChildElement( "Regression" )->FirstChildElement("type")->GetText());
std::unique_ptr<walkers::Robot> robotMat;
if (robotType=="MessorII")
robotMat = walkers::createRobotMessor(robotConfig);
else if (robotType=="Anymal"){
std::cout << "create robot anymal\n";
robotMat = walkers::createRobotAnymal(robotConfig);
}
else if (robotType=="Anymal_C"){
std::cout << "create robot anymal C\n";
robotMat = walkers::createRobotAnymal(robotConfig, "RobotAnymal_C");
}
else
robotMat = walkers::createRobotMessor(robotConfig);
std::unique_ptr<coldet::CollisionDetection> collisionChecker;
if (coldetType=="Coldet")
collisionChecker = coldet::createCollisionDetectionColdet(coldetConfig);
#ifdef BUILD_WITH_FCL
else if (coldetType=="FCL")
collisionChecker = coldet::createCollisionDetectionFCL(coldetConfig);
#endif
else
collisionChecker = coldet::createCollisionDetectionColdet(coldetConfig);
// initialize collision model
size_t elementsNo = robotMat->getLegsNo()*robotMat->getLegJointsNo(0)+1;
size_t modelsNo = robotMat->getLegJointsNo(0)+1;
std::vector<walkers::Vec3> scales;
scales.push_back(robotMat->getModelScale());
for (size_t linkNo=0; linkNo<robotMat->getLegLinksNo(0);linkNo++)
scales.push_back(robotMat->getLegModelScale(0, linkNo));
Objects3DS objects3DS;
robotMat->load3Dobjects(objects3DS);
collisionChecker->initializeMeshModelWalker(objects3DS, modelsNo, elementsNo, scales);
// ///train and verify kinematic margin
// for (size_t legNo=0;legNo<robotMat->getLegsNo();legNo++){
// std::cout << "legNo " <<legNo << "\n";
// std::cout << "plot vertical cross-section over the workspace -- kinematic margin.\n";
// plotVerticalCrossSectionKM(legNo, "kinematicMarginVert"+std::to_string(legNo)+".m", robotMat.get());
// std::cout << "plot horizontal cross-section over the workspace -- kinematic margin.\n";
// plotHorizontalCrossSectionKM(legNo, "kinematicMarginHoriz"+std::to_string(legNo)+".m", robotMat.get());
// /// generate data for training the kinematic margin model (joint configurations)
// std::cout << "Generate data for training.\n";
// generateTrainingSamples(legNo, 10000, "kinemMarginTrain"+std::to_string(legNo)+".dat", robotMat.get());
// std::cout << "Generate data for testing.\n";
// /// and samples for testing
// generateTrainingSamples(legNo, 10000, "kinemMarginTest"+std::to_string(legNo)+".dat", robotMat.get());
// std::cout << "Train the GM model (kinematic margin).\n";
// std::shared_ptr<regression::Regression> gm;
// gm = regression::createGaussianApproximation(std::string("regressionKinemMargin.xml"));
// gm->initializeTraining("kinemMarginTrain"+std::to_string(legNo)+".dat",
// "kinemMarginTest"+std::to_string(legNo)+".dat",
// "kinemMarginTest"+std::to_string(legNo)+".dat");
// gm->train();
// gm->storeResult("leg"+std::to_string(legNo)+"KM.dat");
// gm->writeSummary("resultsTrainKM"+std::to_string(legNo)+".txt", "resultsTestKM"+std::to_string(legNo)+".txt");
// std::cout << "Leg " << legNo << " trained\n";
// gm->load("leg"+std::to_string(legNo)+"KM.dat");
// plotKinematicMarginVertGM(legNo, "marginVertGM"+std::to_string(legNo)+".m", robotMat.get(), gm.get());
// plotKinematicMarginHorizGM(legNo, "marginHorizGM"+std::to_string(legNo)+".m", robotMat.get(), gm.get());
// }
// ///train and verify distance to workspace
// for (size_t legNo=0;legNo<robotMat->getLegsNo();legNo++){
// std::cout << "legNo " <<legNo << "\n";
// std::cout << "plot vertical cross-section over the distance to the workspace.\n";
// plotVerticalCrossSectionOutKM(legNo, "kinematicOutMarginVert"+std::to_string(legNo)+".m", robotMat.get());
// std::cout << "plot horizontal cross-section over the workspace -- kinematic margin.\n";
// plotHorizontalCrossSectionOutKM(legNo, "kinematicOutMarginHoriz"+std::to_string(legNo)+".m", robotMat.get());
// /// generate data for training the distance to the workspace
// std::cout << "Generate data for training.\n";
// generateTrainingSamplesOutWorkspace(legNo, 10000, "kinemOutMarginTrainXYZ"+std::to_string(legNo)+".dat", robotMat.get());
// std::cout << "Generate data for testing.\n";
// /// and samples for testing
// generateTrainingSamplesOutWorkspace(legNo, 10000, "kinemOutMarginTestXYZ"+std::to_string(legNo)+".dat", robotMat.get());
// std::cout << "Train the GM model (kinematic margin).\n";
// std::shared_ptr<regression::Regression> gm;
// gm = regression::createGaussianApproximation(std::string("regressionOutKinemMargin.xml"));
// gm->initializeTraining("kinemOutMarginTrainXYZ"+std::to_string(legNo)+".dat",
// "kinemOutMarginTestXYZ"+std::to_string(legNo)+".dat",
// "kinemOutMarginTestXYZ"+std::to_string(legNo)+".dat");
// gm->train();
// gm->storeResult("leg"+std::to_string(legNo)+"outKM.dat");
// gm->writeSummary("resultsTrainOutKM"+std::to_string(legNo)+".txt", "resultsTestOutKM"+std::to_string(legNo)+".txt");
// std::cout << "Leg " << legNo << " trained\n";
// gm->load("leg"+std::to_string(legNo)+"outKM.dat");
// plotOutKinematicMarginVertGM("marginVertOutGM"+std::to_string(legNo)+".m", gm.get());
// plotOutKinematicMarginHorizGM("marginHorizOutGM"+std::to_string(legNo)+".m", gm.get());
// }
// size_t samplesNoSelfColl = 20000;
// /// generate data for training the self-collision model (joint configurations) and verify the model
// for (size_t legNo=0;legNo<robotMat->getLegsNo();legNo++){
// std::cout << "leg No " << legNo << "\n";
// /// generate data for training the collision model (joint configurations)
// std::cout << "Generate data for training collision model.\n";
// generateTrainingSamplesCollision(legNo, samplesNoSelfColl, "coldetTrain"+std::to_string(legNo)+".dat", robotMat.get());
// std::cout << "Generate data for testing collision model.\n";
// /// and samples for testing
// generateTrainingSamplesCollision(legNo, samplesNoSelfColl, "coldetTest"+std::to_string(legNo)+".dat", robotMat.get());
// std::shared_ptr<regression::Regression> gm;
// gm = regression::createGaussianApproximation(std::string("regressionColl.xml"));
// gm->initializeTraining("coldetTrain"+std::to_string(legNo)+".dat",
// "coldetTest"+std::to_string(legNo)+".dat",
// "coldetTest"+std::to_string(legNo)+".dat");
// gm->train();
// gm->storeResult("leg"+std::to_string(legNo)+"coldet.dat");
// gm->writeSummary("resultsTrainColdet"+std::to_string(legNo)+".txt", "resultsTestColdet"+std::to_string(legNo)+".txt");
// std::cout << "Leg " << legNo << " trained\n";
// gm->load("leg"+std::to_string(legNo)+"coldet.dat");
// // do something with the collision model (the example output is in "resultsTrainColdetX.txt" and resultsTestColdetX.txt)
// }
/// generate data for training the collision model (joint configurations)
size_t samplesNoNeighColl = 20000;
std::vector<std::pair<size_t,size_t>> neighbouringLegs;
if (robotType=="MessorII"){
neighbouringLegs.push_back(std::make_pair(0,1));
neighbouringLegs.push_back(std::make_pair(1,2));
neighbouringLegs.push_back(std::make_pair(3,4));
neighbouringLegs.push_back(std::make_pair(4,5));
}
else if (robotType=="Anymal" || robotType=="Anymal_C"){
neighbouringLegs.push_back(std::make_pair(0,1));
neighbouringLegs.push_back(std::make_pair(2,3));
}
for (const auto& nlegs : neighbouringLegs){
/// generate data for training the collision model (joint configurations)
std::cout << "Generate data for training neighbouring collision model.\n";
generateTrainingSamplesNeighCollision(nlegs.first, nlegs.second, samplesNoNeighColl, "coldetNeighTrain"+std::to_string(nlegs.first)+std::to_string(nlegs.second)+".dat", robotMat.get());
std::cout << "Generate data for testing neighbouring collision model.\n";
/// and samples for testing
generateTrainingSamplesNeighCollision(nlegs.first, nlegs.second, samplesNoNeighColl, "coldetNeighTest"+std::to_string(nlegs.first)+std::to_string(nlegs.second)+".dat", robotMat.get());
std::shared_ptr<regression::Regression> gm;
gm = regression::createGaussianApproximation(std::string("regressionCollNeigh.xml"));
gm->initializeTraining("coldetNeighTrain"+std::to_string(nlegs.first)+std::to_string(nlegs.second)+".dat",
"coldetNeighTest"+std::to_string(nlegs.first)+std::to_string(nlegs.second)+".dat",
"coldetNeighTest"+std::to_string(nlegs.first)+std::to_string(nlegs.second)+".dat");
gm->train();
gm->storeResult("leg"+std::to_string(nlegs.first)+std::to_string(nlegs.second)+"neigh.dat");
gm->writeSummary("resultsTrainColdetNeigh"+std::to_string(nlegs.first)+std::to_string(nlegs.second)+".txt", "resultsTestColdetNeigh"+std::to_string(nlegs.first)+std::to_string(nlegs.second)+".txt");
std::cout << "Legs " << nlegs.first << ", " << nlegs.second << " trained\n";
gm->load("leg"+std::to_string(nlegs.first)+std::to_string(nlegs.second)+"neigh.dat");
// do something with the collision model (the example output is in "resultsTrainColdetX.txt" and resultsTestColdetX.txt)
}
std::cout << "samples generated\n";
std::cout << "Finished!\n";
std::cout << "Use Octave/Matlab to plot generated m-files\n";
return 1;
}
catch (const std::exception& ex) {
std::cerr << ex.what() << std::endl;
return 1;
}
return 0;
}