-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdatasets.py
167 lines (136 loc) · 5.58 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# --------------------------------------------------------
# Bootstrapped Masked Autoencoders for Vision BERT Pretraining
# Licensed under The MIT License [see LICENSE for details]
# By Xiaoyi Dong
# Based on BEiT, timm, DINO and DeiT code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import torch
import os
from torchvision import datasets, transforms
from timm.data.constants import \
IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.data.transforms import RandomResizedCropAndInterpolation
from timm.data import create_transform
from masking_generator import MaskingGenerator
from data.build import build_imagenet_dataset
import random
import numpy as np
class DataAugmentationForAE(object):
def __init__(self, args):
imagenet_default_mean_and_std = args.imagenet_default_mean_and_std
mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN
std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD
self.transform = transforms.Compose([
transforms.RandomResizedCrop(args.input_size, scale=(args.resize_scale, 1), interpolation=3),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
mean=mean,
std=std,
)])
self.masked_position_generator = MaskingGenerator(
args.window_size, num_masking_patches=args.num_mask_patches,
max_num_patches=args.max_mask_patches_per_block,
min_num_patches=args.min_mask_patches_per_block,
)
def __call__(self, image):
img = self.transform(image)
if self.masked_position_generator is not None:
return img, self.masked_position_generator()
else:
return img
def __repr__(self):
repr = "(DataAugmentationForAE,\n"
repr += " img_transform = %s,\n" % str(self.transform)
repr += " Masked position generator = %s,\n" % str(self.masked_position_generator)
repr += ")"
return repr
def build_pretraining_dataset(args):
from data.labeled_memcached_dataset import McDataset
transform = DataAugmentationForAE(args)
print("Data Aug = %s" % str(transform))
dataset = McDataset(args.data_path,
'./data/ILSVRC2012_name_train.txt', transform=transform)
return dataset
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
print("Transform = ")
if isinstance(transform, tuple):
for trans in transform:
print(" - - - - - - - - - - ")
for t in trans.transforms:
print(t)
else:
for t in transform.transforms:
print(t)
print("---------------------------")
if args.data_set == 'CIFAR':
dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform)
nb_classes = 100
elif args.data_set == 'IMNET':
dataset = build_imagenet_dataset(args, is_train, transform)
nb_classes = 1000
else:
raise NotImplementedError()
assert nb_classes == args.nb_classes
print("Number of the class = %d" % args.nb_classes)
return dataset, nb_classes
def build_transform(is_train, args):
resize_im = args.input_size > 32
imagenet_default_mean_and_std = args.imagenet_default_mean_and_std
mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN
std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
mean=mean,
std=std,
)
if not resize_im:
# replace RandomResizedCropAndInterpolation with
# RandomCrop
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
if resize_im:
if args.crop_pct is None:
if args.input_size < 384:
args.crop_pct = 224 / 256
else:
args.crop_pct = 1.0
size = int(args.input_size / args.crop_pct)
t.append(
transforms.Resize(size, interpolation=3), # to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(mean, std))
return transforms.Compose(t)
def build_linear_dataset(is_train, args, transform):
print("Transform = ")
if isinstance(transform, tuple):
for trans in transform:
print(" - - - - - - - - - - ")
for t in trans.transforms:
print(t)
else:
for t in transform.transforms:
print(t)
print("---------------------------")
dataset = build_imagenet_dataset(args, is_train, transform)
nb_classes = 1000
print("Number of the class = %d" % nb_classes)
return dataset