-
Notifications
You must be signed in to change notification settings - Fork 6
/
run_pretraining.py
549 lines (454 loc) · 23.8 KB
/
run_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
# --------------------------------------------------------
# Bootstrapped Masked Autoencoders for Vision BERT Pretraining
# By Xiaoyi Dong
# Licensed under The MIT License
# Based on BEiT, timm, DINO and DeiT code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
import os
import torch.distributed as dist
import torchvision.utils
import math
import sys
from typing import Iterable
import torch
import torch.nn as nn
import utils
from pathlib import Path
from timm.models import create_model
from optim_factory import create_adamw_optimizer
from timm.utils import *
from datasets import build_pretraining_dataset
from utils import NativeScalerWithGradNormCount as NativeScaler
import utils
import models
import copy
import random
from timm.utils import ModelEma
import warnings
warnings.filterwarnings("ignore")
def get_args():
parser = argparse.ArgumentParser('BootMAE pre-training script', add_help=False)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--epochs', default=800, type=int)
parser.add_argument('--update_freq', default=1, type=int)
parser.add_argument('--save_ckpt_freq', default=20, type=int)
# Model parameters
parser.add_argument('--model', default='bootmae_base', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--rel_pos_bias', action='store_true')
parser.add_argument('--disable_rel_pos_bias', action='store_false', dest='rel_pos_bias')
parser.set_defaults(rel_pos_bias=True)
parser.add_argument('--abs_pos_emb', action='store_true')
parser.set_defaults(abs_pos_emb=False)
parser.add_argument('--layer_scale_init_value', default=0, type=float,
help="0.1 for base, 1e-5 for large. set 0 to disable layer scale")
parser.add_argument('--num_mask_patches', default=120, type=int,
help='number of the visual tokens/patches need be masked')
parser.add_argument('--max_mask_patches_per_block', type=int, default=60)
parser.add_argument('--min_mask_patches_per_block', type=int, default=16)
parser.add_argument('--input_size', default=224, type=int,
help='images input size for backbone')
parser.add_argument('--second_input_size', default=224, type=int,
help='images input size for discrete vae')
parser.add_argument('--drop_path', type=float, default=0, metavar='PCT',
help='Drop path rate (default: 0)')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the
weight decay. We use a cosine schedule for WD.
(Set the same value with args.weight_decay to keep weight decay no change)""")
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr_scheduler', type=str, default='cos')
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N',
help='epochs to warmup LR, if scheduler supports')
# Augmentation parameters
parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--train_interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--second_interpolation', type=str, default='lanczos',
help='Interpolation for discrete vae (random, bilinear, bicubic default: "lanczos")')
# Dataset parameters
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--train_set', default='train', help='train set name')
parser.add_argument('--test_set', default='val', help='test set name')
parser.add_argument('--data', default='imagenet', help='dataset: imagenet, imagenet-tsv, imagenet22k-tsv')
parser.add_argument('--imagenet_default_mean_and_std', default=False, action='store_true')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default=None,
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume')
parser.set_defaults(auto_resume=True)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--num-gpu', type=int, default=1,
help='Number of GPUS to use')
parser.add_argument('--smooth-epoch', type=int, default=30, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--feature_weight', type=float, default=0)
parser.add_argument('--mask_num', type=float, default=147)
parser.add_argument('--weight_mask', default=False, action='store_true')
parser.add_argument('--model_ema', action='store_true', default=False)
parser.add_argument('--model_ema_decay', type=float, default=0.999, help='the start ema decay')
parser.add_argument('--model_ema_dynamic', action='store_true', default=False)
parser.add_argument('--resize_scale', type=float, default=0.2)
return parser.parse_args()
def get_model(args):
print(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=False,
drop_path_rate=args.drop_path,
drop_block_rate=None,
#decoder_depth=args.decoder_depth,
use_shared_rel_pos_bias=args.rel_pos_bias,
use_abs_pos_emb=args.abs_pos_emb,
init_values=args.layer_scale_init_value,
)
return model
@torch.no_grad()
def concat_all_gather(tensor, rank, sele=False):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
#print (rank, torch.sum(tensors_gather[rank] - tensor).item(), torch.sum(tensors_gather[rank-1]-tensor).item())
if sele:
tensors_gather = [tensors_gather[i] for i in range(len(tensors_gather)) if i!=rank]
output = torch.cat(tensors_gather, dim=0)
return output
def main(args):
#utils.init_distributed_mode(args)
assert args.data in ['imagenet', 'imagenet-tsv', 'imagenet22k-tsv']
args.distributed = False
if 'WORLD_SIZE' in os.environ:
args.distributed = int(os.environ['WORLD_SIZE']) > 1
print('**********find WORLD_SIZE %d in env**********' % int(os.environ['WORLD_SIZE']))
if args.distributed and args.num_gpu > 1:
args.num_gpu = 1
args.device = 'cuda:0'
args.world_size = 1
args.rank = 0 # global rank
if args.distributed:
args.num_gpu = 1
args.device = 'cuda:%d' % args.local_rank
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
args.world_size = torch.distributed.get_world_size()
args.rank = torch.distributed.get_rank()
print('************World_size is %d, current rank %d ***********, local rank %d' % (args.world_size, args.rank, args.local_rank))
assert args.rank >= 0
torch.distributed.barrier()
utils.setup_for_distributed(args.rank == 0)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
model = get_model(args)
patch_size = model.patch_embed.patch_size
print("Patch size = %s" % str(patch_size))
args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1])
args.patch_size = patch_size
# get dataset
dataset_train = build_pretraining_dataset(args)
if True: # args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_rank = global_rank
num_training_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks // args.update_freq
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
model.to(device)
model_without_ddp = model
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='',
resume='')
print("Using EMA with decay = %.8f" % args.model_ema_decay)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params:', n_parameters)
total_batch_size = args.batch_size * args.update_freq * utils.get_world_size()
print("Base LR = %.8f" % args.lr)
args.lr = args.lr * total_batch_size / 256
print("Adjuested LR = %.8f" % args.lr)
print("Adjuested Min LR = %.8f" % args.min_lr)
print("Batch size = %d" % total_batch_size)
print("Update frequent = %d" % args.update_freq)
print("Number of training steps = %d" % num_training_steps_per_epoch)
print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch))
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=False)
model_without_ddp = model.module
optimizer = create_adamw_optimizer(
args, model_without_ddp)
loss_scaler = NativeScaler()
print("Use step level LR & WD scheduler!")
if args.lr_scheduler == 'cos':
print ('USEING COS LR')
lr_schedule_values = utils.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
elif args.lr_scheduler == 'step':
print ('USEING STEP LR')
lr_schedule_values = utils.step_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
if args.weight_decay_end is None:
args.weight_decay_end = args.weight_decay
wd_schedule_values = utils.cosine_scheduler(
args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch)
print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)))
utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, log_writer=log_writer,
start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values,
wd_schedule_values=wd_schedule_values,
update_freq=args.update_freq, smooth_epoch=args.smooth_epoch,
rank=args.local_rank,
output_dir=args.output_dir,
args=args, model_ema=model_ema,
)
if args.output_dir:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
def train_one_epoch(model: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
log_writer=None, lr_scheduler=None, start_steps=None,
update_freq=None, smooth_epoch=None,
lr_schedule_values=None, wd_schedule_values=None,
rank=0, output_dir=None, args=None, model_ema=None):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
if loss_scaler is None:
model.zero_grad()
model.micro_steps = 0
else:
optimizer.zero_grad()
### linear increase feature_weight at 25% epochs
feature_weight = args.feature_weight * (1+epoch) / args.epochs
feature_weight = min(feature_weight*4, args.feature_weight)
### step ema
model_ema.decay = utils.adjust_ema_momentum(epoch, args)
print ('Dynamic EMA DECAY ', model_ema.decay)
win_size = args.window_size[0]
patch_size = args.patch_size[0]
seq_len = win_size ** 2
pool = torch.nn.AvgPool2d(3,1,padding=1).cuda()
mask_len = int(args.mask_num)
LN = nn.LayerNorm(model.module.embed_dim, eps=1e-6, elementwise_affine=False).cuda()
for data_iter_step, (imgs, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
step = data_iter_step // update_freq
# assign learning rate & weight decay for each step
it = start_steps + step # global training iteration
if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
if wd_schedule_values is not None and param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
images = imgs[0].to(device, non_blocking=True)
masks = imgs[1].to(device, non_blocking=True)
bz, _, H, W = images.shape
with torch.no_grad():
idx_shuffle = utils.mask_to_index(masks)
temp_len = mask_len
### index to mask
idx_unshuffle = torch.argsort(idx_shuffle, dim=1)
loss_mask = [0]*(seq_len-temp_len) + [1]*temp_len
loss_mask = torch.Tensor(loss_mask).reshape(1, seq_len).cuda().repeat(bz,1)
loss_mask = torch.gather(loss_mask, dim=1, index = idx_unshuffle)
loss_mask = loss_mask.reshape(-1, 1, win_size, win_size).to(torch.float)
if args.weight_mask:
weight_mask = loss_mask * pool(loss_mask) + loss_mask
perc_mask = weight_mask.reshape(-1, seq_len, 1)
weight_mask = torch.nn.functional.interpolate(weight_mask, (H, W), mode='nearest')
else:
weight_mask = torch.nn.functional.interpolate(loss_mask, (H, W), mode='nearest')
perc_mask = loss_mask.reshape(-1, seq_len, 1)
loss_mask = torch.nn.functional.interpolate(loss_mask, (H, W), mode='nearest')
vis_mask = 1 - loss_mask
### pixel norm
patch = images.reshape(bz, 3, win_size, patch_size, win_size, patch_size).permute(0,2,4,1,3,5).reshape(-1,3,patch_size,patch_size)
patch_mean = patch.mean(dim=[2,3], keepdim=True)
im_mean = patch_mean.repeat(1,1,patch_size,patch_size).reshape(bz,win_size,win_size,3,patch_size,patch_size).permute(0,3,1,4,2,5).reshape(bz,3,H,W)
patch_std = torch.sqrt(patch.var(dim=[2,3], keepdim=True, unbiased=False) + 1e-5)
im_std = patch_std.repeat(1,1,patch_size,patch_size).reshape(bz,win_size,win_size,3,patch_size,patch_size).permute(0,3,1,4,2,5).reshape(bz,3,H,W)
im_norm = (images - im_mean) / im_std
with torch.cuda.amp.autocast():
out = model(images, temp_len, idx_shuffle)
Rloss = torch.mean(weight_mask * ((out[0] - im_norm)**2))/torch.mean(loss_mask)
if feature_weight > 0:
with torch.no_grad():
assert model_ema is not None
feat_model = model_ema.ema
feat_model.eval()
Feat_gt = feat_model.get_feature(images, temp_len, idx_shuffle)
assert Feat_gt.shape == out[1].shape
Ploss = torch.mean(perc_mask * ((LN(Feat_gt) - LN(out[1]))**2))/torch.mean(loss_mask)
else:
Ploss = torch.zeros(1).cuda()
loss = Rloss + Ploss * feature_weight
loss_value = loss.item()
if not math.isfinite(loss_value):
print("RLoss is {} PLoss is {}, stopping training".format(Rloss.item(), Ploss.item()),force=True)
print ('out0',torch.sum(out[0]),force=True)
print ('out1',torch.sum(out[1]),force=True)
print ('perc',torch.sum(Feat_gt),force=True)
sys.exit(1)
if loss_scaler is None:
loss /= update_freq
model.backward(loss)
model.step()
else:
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss /= update_freq
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order,
update_grad=(data_iter_step + 1) % update_freq == 0)
if (data_iter_step + 1) % update_freq == 0:
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model)
loss_scale_value = loss_scaler.state_dict()["scale"]
#torch.cuda.synchronize()
if rank == 0 and it % 1000 == 0:# and False:
with torch.no_grad():
#patch = im_norm * im_std + im_mean
dim = patch_size * patch_size * 3
patch = patch.reshape(bz, win_size*win_size, dim)
patch = torch.gather(patch, dim=1, index = idx_shuffle.unsqueeze(-1).repeat(1, 1, dim))
patch = torch.gather(patch, dim=1, index = idx_unshuffle.unsqueeze(-1).repeat(1, 1, dim))
patch = patch.reshape(bz,win_size,win_size,3,patch_size,patch_size).permute(0,3,1,4,2,5).reshape(bz,3,224,224)
patch_1 = im_norm * im_std + im_mean
out_im = out[0] * im_std #+ im_mean
images_1 = images * vis_mask
im_save = torch.cat([patch, patch_1, images_1, out_im], dim=-1)
im_save = im_save[:32] * 0.5 + 0.5
torchvision.utils.save_image(
im_save,
os.path.join(output_dir, 'train-%d.jpg' % it),
padding=0,
normalize=False)
metric_logger.update(loss=loss_value)
metric_logger.update(Rloss=Rloss.item())
metric_logger.update(Ploss=Ploss.item())
metric_logger.update(Pmean=torch.mean(torch.abs(out[1])).item())
metric_logger.update(Pgt=torch.mean(torch.abs(Feat_gt)).item())
metric_logger.update(loss_scale=loss_scale_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group["weight_decay"] > 0:
weight_decay_value = group["weight_decay"]
metric_logger.update(weight_decay=weight_decay_value)
metric_logger.update(grad_norm=grad_norm)
if lr_scheduler is not None:
lr_scheduler.step_update(start_steps + step)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if __name__ == '__main__':
opts = get_args()
if opts.output_dir:
Path(opts.output_dir).mkdir(parents=True, exist_ok=True)
main(opts)