-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy patheval_kitti_noc_sf.py
219 lines (171 loc) · 8.36 KB
/
eval_kitti_noc_sf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import utils
import hydra
import shutil
import logging
import torch
import torch.optim
import torch.utils.data as data
import torch.backends.cudnn as cudnn
import numpy as np
from tqdm import tqdm
from omegaconf import DictConfig
from factory import model_factory
from utils import copy_to_device, size_of_batch, load_calib
class KITTIPointPWC(data.Dataset):
""" Non-occluded evaluation following PointPWC """
def __init__(self, remove_ground=True):
self.root = 'datasets/kitti_scene_flow/training/pointcloud'
self.remove_ground = remove_ground
self.DEPTH_THRESHOLD = 35.0
self.no_corr = True
self.num_points = 8192
self.allow_less_points = False
self.samples = self.make_dataset()
if len(self.samples) == 0:
raise (RuntimeError("Found 0 files in subfolders of: " + self.root + "\n"))
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
data_dict = {'index': index}
pc1_loaded, pc2_loaded = self.pc_loader(self.samples[index])
pc1_transformed, pc2_transformed, sf_transformed = self.process_pc(pc1_loaded, pc2_loaded)
# pack
pc_pair = np.concatenate([pc1_transformed, pc2_transformed], axis=1)
data_dict['pcs'] = pc_pair.transpose()
data_dict['flow_3d'] = sf_transformed.transpose()
# pass camera params for IDS
proj_mat = load_calib(os.path.join('datasets/kitti_scene_flow/training/calib_cam_to_cam', '%06d.txt' % index))
f, cx, cy = proj_mat[0, 0], proj_mat[0, 2], proj_mat[1, 2]
data_dict['intrinsics'] = np.float32([f, cx, cy]) # f, cx, cy
# adjust domain range according to mean and std
data_dict['src_mean'] = np.array([1.9823, -4.0814, 87.4855], dtype=np.float32) # kitti
data_dict['src_std'] = np.array([11.1490, 1.3005, 10.9335], dtype=np.float32)
data_dict['dst_mean'] = np.array([0.079332, 1.8988, 91.909], dtype=np.float32) # things
data_dict['dst_std'] = np.array([8.0472, 4.1851, 13.6923], dtype=np.float32)
return data_dict
def make_dataset(self):
do_mapping = True
root = os.path.realpath(os.path.expanduser(self.root))
all_paths = sorted(os.walk(root))
useful_paths = [item[0] for item in all_paths if len(item[1]) == 0]
try:
assert (len(useful_paths) == 200)
except AssertionError:
print('assert (len(useful_paths) == 200) failed!', len(useful_paths))
if do_mapping:
mapping_path = os.path.join(self.root, 'KITTI_mapping.txt')
with open(mapping_path) as fd:
lines = fd.readlines()
lines = [line.strip() for line in lines]
useful_paths = [path for path in useful_paths if lines[int(os.path.split(path)[-1])] != '']
res_paths = useful_paths
return res_paths
def pc_loader(self, path):
pc1 = np.load(os.path.join(path, 'pc1.npy')) #.astype(np.float32)
pc2 = np.load(os.path.join(path, 'pc2.npy')) #.astype(np.float32)
if self.remove_ground:
is_ground = np.logical_and(pc1[:,1] < -1.4, pc2[:,1] < -1.4)
not_ground = np.logical_not(is_ground)
pc1 = pc1[not_ground]
pc2 = pc2[not_ground]
return pc1, pc2
def process_pc(self, pc1, pc2):
np.random.seed(1)
if pc1 is None:
return None, None, None,
sf = pc2[:, :3] - pc1[:, :3]
if self.DEPTH_THRESHOLD > 0:
near_mask = np.logical_and(pc1[:, 2] < self.DEPTH_THRESHOLD, pc2[:, 2] < self.DEPTH_THRESHOLD)
else:
near_mask = np.ones(pc1.shape[0], dtype=np.bool)
indices = np.where(near_mask)[0]
assert len(indices) > 0
if self.num_points > 0:
try:
sampled_indices1 = np.random.choice(indices, size=self.num_points, replace=False, p=None)
if self.no_corr:
sampled_indices2 = np.random.choice(indices, size=self.num_points, replace=False, p=None)
else:
sampled_indices2 = sampled_indices1
except ValueError:
if not self.allow_less_points:
#replicate some points
sampled_indices1 = np.random.choice(indices, size=self.num_points, replace=True, p=None)
if self.no_corr:
sampled_indices2 = np.random.choice(indices, size=self.num_points, replace=True, p=None)
else:
sampled_indices2 = sampled_indices1
else:
sampled_indices1 = indices
sampled_indices2 = indices
else:
sampled_indices1 = indices
sampled_indices2 = indices
pc1 = pc1[sampled_indices1]
sf = sf[sampled_indices1]
pc2 = pc2[sampled_indices2]
return pc1, pc2, sf
class Evaluator:
def __init__(self, device: torch.device, cfgs: DictConfig):
self.cfgs = cfgs
self.device = device
logging.info('Loading test set from %s' % self.cfgs.testset.root_dir)
self.test_dataset = KITTIPointPWC()
self.test_loader = utils.FastDataLoader(
dataset=self.test_dataset,
batch_size=8,
num_workers=self.cfgs.testset.n_workers
)
logging.info('Creating model: %s' % self.cfgs.model.name)
self.model = model_factory(self.cfgs.model).to(device=self.device)
self.model.eval()
logging.info('Loading checkpoint from %s' % self.cfgs.ckpt.path)
checkpoint = torch.load(self.cfgs.ckpt.path, self.device)
self.model.load_state_dict(checkpoint['state_dict'], strict=self.cfgs.ckpt.strict)
@torch.no_grad()
def run(self):
logging.info('Running evaluation...')
metrics_3d = {'counts': 0, 'EPE3d': 0.0, 'AccS': 0.0, 'AccR': 0.0, 'Outlier': 0.0}
for inputs in tqdm(self.test_loader):
inputs = copy_to_device(inputs, self.device)
with torch.cuda.amp.autocast(enabled=False):
outputs = self.model.forward(inputs)
for batch_id in range(size_of_batch(inputs)):
flow_3d_pred = outputs['flow_3d'][batch_id]
flow_3d_target = inputs['flow_3d'][batch_id]
epe3d_map = torch.sqrt(torch.sum((flow_3d_pred - flow_3d_target) ** 2, dim=0))
gt_norm = torch.linalg.norm(flow_3d_target, axis=0)
relative_err = epe3d_map / (gt_norm + 1e-4)
acc3d_strict = torch.logical_or(epe3d_map < 0.05, relative_err < 0.05)
acc3d_relax = torch.logical_or(epe3d_map < 0.1, relative_err < 0.1)
outlier = torch.logical_or(epe3d_map > 0.3, relative_err > 0.1)
metrics_3d['counts'] += 1 # averaged over batch (following PointPWC)
metrics_3d['EPE3d'] += epe3d_map.sum().item() / epe3d_map.shape[0]
metrics_3d['AccS'] += torch.count_nonzero(acc3d_strict).item() / epe3d_map.shape[0]
metrics_3d['AccR'] += torch.count_nonzero(acc3d_relax).item() / epe3d_map.shape[0]
metrics_3d['Outlier'] += torch.count_nonzero(outlier).item() / epe3d_map.shape[0]
logging.info('#### 3D Metrics ####')
logging.info('EPE: %.3f' % (metrics_3d['EPE3d'] / metrics_3d['counts']))
logging.info('AccS: %.2f%%' % (metrics_3d['AccS'] / metrics_3d['counts'] * 100.0))
logging.info('AccR: %.2f%%' % (metrics_3d['AccR'] / metrics_3d['counts'] * 100.0))
logging.info('Outlier: %.2f%%' % (metrics_3d['Outlier'] / metrics_3d['counts'] * 100.0))
@hydra.main(config_path='conf', config_name='evaluator')
def main(cfgs: DictConfig):
utils.init_logging()
# change working directory
shutil.rmtree(os.getcwd(), ignore_errors=True)
os.chdir(hydra.utils.get_original_cwd())
if torch.cuda.device_count() == 0:
device = torch.device('cpu')
logging.info('No CUDA device detected, using CPU for evaluation')
elif torch.cuda.device_count() == 1:
device = torch.device('cuda:0')
logging.info('Using GPU: %s' % torch.cuda.get_device_name(device))
cudnn.benchmark = True
else:
raise RuntimeError('Evaluation script does not support multi-GPU systems.')
evaluator = Evaluator(device, cfgs)
evaluator.run()
if __name__ == '__main__':
main()