-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathsintel.py
156 lines (122 loc) · 6.04 KB
/
sintel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import cv2
import glob
import numpy as np
import torch.utils.data
from utils import load_flow
# Unofficial train-val split from https://github.com/lliuz/ARFlow/blob/master/datasets/flow_datasets.py#L94
TRAIN_SCENES = ['alley_1', 'ambush_4', 'ambush_6', 'ambush_7', 'bamboo_2', 'bandage_2', 'cave_2',
'market_2', 'market_5', 'shaman_2', 'sleeping_2', 'temple_3']
VALIDATE_SCENES = ['alley_2', 'ambush_2', 'ambush_5', 'bamboo_1', 'bandage_1', 'cave_4', 'market_6',
'mountain_1', 'shaman_3', 'sleeping_1', 'temple_2']
def depth_read(filename):
""" Read depth data from file, return as numpy array.
from datasets/sintel/stereo/sdk/python/sintel_io.py
"""
f = open(filename,'rb')
TAG_FLOAT = 202021.25
check = np.fromfile(f,dtype=np.float32,count=1)[0]
assert check == TAG_FLOAT, ' depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check)
width = np.fromfile(f,dtype=np.int32,count=1)[0]
height = np.fromfile(f,dtype=np.int32,count=1)[0]
size = width*height
assert width > 0 and height > 0 and size > 1 and size < 100000000, ' depth_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height)
depth = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width))
return depth
def depth2pc(depth, f, cx, cy):
h, w = depth.shape
xx = np.tile(np.arange(w, dtype=np.float32)[None, :], (h, 1))
yy = np.tile(np.arange(h, dtype=np.float32)[:, None], (1, w))
x = (xx - cx) * depth / f
y = (yy - cy) * depth / f
pc = np.concatenate([
x[:, :, None], y[:, :, None], depth[:, :, None]
], axis=-1)
return pc
class Sintel(torch.utils.data.Dataset):
def __init__(self, cfgs):
assert os.path.isdir(cfgs.root_dir)
assert cfgs.pass_name in ['clean', 'final', 'clean_final']
self.dataset_dir = cfgs.root_dir
self.split = cfgs.split
self.cfgs = cfgs
if self.split == 'train':
scene_names = TRAIN_SCENES
elif self.split == 'val':
scene_names = VALIDATE_SCENES
elif self.split == 'trainval':
scene_names = TRAIN_SCENES + VALIDATE_SCENES
else:
raise ValueError
self.samples = []
for pass_name in ['clean', 'final']:
if pass_name not in self.cfgs.pass_name:
continue
for scene_name in scene_names:
image_dir = os.path.join(self.dataset_dir, 'flow', 'training', pass_name, scene_name)
depth_dir = os.path.join(self.dataset_dir, 'depth', 'training', 'depth', scene_name)
flow_dir = os.path.join(self.dataset_dir, 'flow', 'training', 'flow', scene_name)
image_paths = sorted(glob.glob(os.path.join(image_dir, '*.png')))
depth_paths = sorted(glob.glob(os.path.join(depth_dir, '*.dpt')))
flow_paths = sorted(glob.glob(os.path.join(flow_dir, '*.flo')))
assert len(image_paths) == len(depth_paths) == len(flow_paths) + 1
for i, flow_path in enumerate(flow_paths):
image1_path, image2_path = image_paths[i], image_paths[i + 1]
depth1_path, depth2_path = depth_paths[i], depth_paths[i + 1]
self.samples.append({
'image1_path': image1_path,
'image2_path': image2_path,
'depth1_path': depth1_path,
'depth2_path': depth2_path,
'flow_path': flow_path,
'scene_name': scene_name,
'sample_name': os.path.basename(image1_path).split('.')[0],
})
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
np.random.seed(0)
sample = self.samples[index]
data_dict = {
'index': index,
'scene_name': sample['scene_name'],
'sample_name': sample['sample_name']
}
image1_path = sample['image1_path']
image2_path = sample['image2_path']
depth1_path = sample['depth1_path']
depth2_path = sample['depth2_path']
flow_path = sample['flow_path']
image1, image2 = cv2.imread(image1_path), cv2.imread(image2_path)
depth1, depth2 = depth_read(depth1_path), depth_read(depth2_path)
flow_2d = load_flow(flow_path)
# make sure there are enough input points
while min(np.count_nonzero(depth1 < self.cfgs.max_depth),
np.count_nonzero(depth2 < self.cfgs.max_depth)) < self.cfgs.n_points:
depth1 *= 0.1
depth2 *= 0.1
min_depth = min(np.min(depth1), np.min(depth2))
depth1 += 5 - min_depth
depth2 += 5 - min_depth
# generate point clouds
f, cx, cy = 1500.0, 511.5, 217.5
pc1 = depth2pc(depth1, f, cx, cy)
pc2 = depth2pc(depth2, f, cx, cy)
flow_3d = np.zeros_like(pc1)
# limit max depth
mask1 = (pc1[..., -1] < max(np.min(pc1[..., -1]) + 1, self.cfgs.max_depth))
mask2 = (pc2[..., -1] < max(np.min(pc2[..., -1]) + 1, self.cfgs.max_depth))
pc1, pc2, flow_3d = pc1[mask1], pc2[mask2], flow_3d[mask1]
# random sampling
indices1 = np.random.choice(pc1.shape[0], size=self.cfgs.n_points, replace=pc1.shape[0] < self.cfgs.n_points)
indices2 = np.random.choice(pc2.shape[0], size=self.cfgs.n_points, replace=pc2.shape[0] < self.cfgs.n_points)
pc1, pc2, flow_3d = pc1[indices1], pc2[indices2], flow_3d[indices1]
pc_pair = np.concatenate([pc1, pc2], axis=1)
data_dict['pcs'] = pc_pair.transpose()
data_dict['flow_3d'] = flow_3d.transpose()
data_dict['intrinsics'] = np.float32([f, cx, cy])
image1, image2 = image1[..., ::-1], image2[..., ::-1]
image_pair = np.concatenate([image1, image2], axis=-1)
data_dict['images'] = image_pair.transpose([2, 0, 1])
data_dict['flow_2d'] = flow_2d.transpose([2, 0, 1])
return data_dict