-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtiming.py
100 lines (82 loc) · 3.14 KB
/
timing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import time
import utils
import logging
import argparse
import importlib
import torch
import torch.distributed
import torch.backends.cudnn as cudnn
from mmcv import Config, DictAction
from mmcv.parallel import MMDataParallel
from mmcv.runner import load_checkpoint
from mmdet.apis import set_random_seed
from mmdet3d.datasets import build_dataset, build_dataloader
from mmdet3d.models import build_model
def main():
parser = argparse.ArgumentParser(description='Validate a detector')
parser.add_argument('--config', required=True)
parser.add_argument('--weights', required=True)
parser.add_argument('--num_warmup', default=10)
parser.add_argument('--samples', default=500)
parser.add_argument('--log-interval', default=50, help='interval of logging')
parser.add_argument('--override', nargs='+', action=DictAction)
args = parser.parse_args()
# parse configs
cfgs = Config.fromfile(args.config)
if args.override is not None:
cfgs.merge_from_dict(args.override)
# register custom module
importlib.import_module('models')
importlib.import_module('loaders')
# MMCV, please shut up
from mmcv.utils.logging import logger_initialized
logger_initialized['root'] = logging.Logger(__name__, logging.WARNING)
logger_initialized['mmcv'] = logging.Logger(__name__, logging.WARNING)
utils.init_logging(None, cfgs.debug)
# you need GPUs
assert torch.cuda.is_available() and torch.cuda.device_count() == 1
logging.info('Using GPU: %s' % torch.cuda.get_device_name(0))
torch.cuda.set_device(0)
logging.info('Setting random seed: 0')
set_random_seed(0, deterministic=True)
cudnn.benchmark = True
logging.info('Loading validation set from %s' % cfgs.data.val.data_root)
val_dataset = build_dataset(cfgs.data.val)
val_loader = build_dataloader(
val_dataset,
samples_per_gpu=1,
workers_per_gpu=cfgs.data.workers_per_gpu,
num_gpus=1,
dist=False,
shuffle=False,
seed=0,
)
logging.info('Creating model: %s' % cfgs.model.type)
model = build_model(cfgs.model)
model.cuda()
assert torch.cuda.device_count() == 1
model = MMDataParallel(model, [0])
logging.info('Loading checkpoint from %s' % args.weights)
load_checkpoint(
model, args.weights, map_location='cuda', strict=False,
logger=logging.Logger(__name__, logging.ERROR)
)
model.eval()
pure_inf_time = 0
with torch.no_grad():
for i, data in enumerate(val_loader):
torch.cuda.synchronize()
start_time = time.perf_counter()
model(return_loss=False, rescale=True, **data)
torch.cuda.synchronize()
elapsed = time.perf_counter() - start_time
if i >= args.num_warmup:
pure_inf_time += elapsed
if (i + 1) % args.log_interval == 0:
fps = (i + 1 - args.num_warmup) / pure_inf_time
print(f'Done sample [{i + 1:<3}/ {args.samples}], '
f'fps: {fps:.1f} sample / s')
if (i + 1) == args.samples:
break
if __name__ == '__main__':
main()