-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrain.py
180 lines (149 loc) · 6.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import utils
import shutil
import logging
import argparse
import importlib
import torch
import torch.distributed as dist
from datetime import datetime
from mmcv import Config, DictAction
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import EpochBasedRunner, build_optimizer, load_checkpoint
from mmdet.apis import set_random_seed
from mmdet.core import DistEvalHook, EvalHook
from mmdet3d.datasets import build_dataset
from mmdet3d.models import build_model
from loaders.builder import build_dataloader
def main():
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument('--config', required=True)
parser.add_argument('--override', nargs='+', action=DictAction)
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--world_size', type=int, default=1)
args = parser.parse_args()
# parse configs
cfgs = Config.fromfile(args.config)
if args.override is not None:
cfgs.merge_from_dict(args.override)
# register custom module
importlib.import_module('models')
importlib.import_module('loaders')
# MMCV, please shut up
from mmcv.utils.logging import logger_initialized
logger_initialized['root'] = logging.Logger(__name__, logging.WARNING)
logger_initialized['mmcv'] = logging.Logger(__name__, logging.WARNING)
logger_initialized['mmdet3d'] = logging.Logger(__name__, logging.WARNING)
# you need GPUs
assert torch.cuda.is_available()
# determine local_rank and world_size
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
if 'WORLD_SIZE' not in os.environ:
os.environ['WORLD_SIZE'] = str(args.world_size)
local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
if local_rank == 0:
# resume or start a new run
if cfgs.resume_from is not None:
assert os.path.isfile(cfgs.resume_from)
work_dir = os.path.dirname(cfgs.resume_from)
else:
run_name = ''
if not cfgs.debug:
run_name = input('Name your run (leave blank for default): ')
if run_name == '':
run_name = datetime.now().strftime("%Y-%m-%d/%H-%M-%S")
work_dir = os.path.join('outputs', cfgs.model.type, run_name)
if os.path.exists(work_dir): # must be an empty dir
if input('Path "%s" already exists, overwrite it? [Y/n] ' % work_dir) == 'n':
print('Bye.')
exit(0)
shutil.rmtree(work_dir)
os.makedirs(work_dir, exist_ok=False)
# init logging, backup code
utils.init_logging(os.path.join(work_dir, 'train.log'), cfgs.debug)
utils.backup_code(work_dir)
logging.info('Logs will be saved to %s' % work_dir)
else:
# disable logging on other workers
logging.root.disabled = True
work_dir = '/tmp'
logging.info('Using GPU: %s' % torch.cuda.get_device_name(local_rank))
torch.cuda.set_device(local_rank)
if world_size > 1:
logging.info('Initializing DDP with %d GPUs...' % world_size)
dist.init_process_group('nccl', init_method='env://')
logging.info('Setting random seed: 0')
set_random_seed(0, deterministic=True)
logging.info('Loading training set from %s' % cfgs.dataset_root)
train_dataset = build_dataset(cfgs.data.train)
train_loader = build_dataloader(
train_dataset,
samples_per_gpu=cfgs.batch_size // world_size,
workers_per_gpu=cfgs.data.workers_per_gpu,
num_gpus=world_size,
dist=world_size > 1,
shuffle=True,
seed=0,
)
logging.info('Loading validation set from %s' % cfgs.dataset_root)
val_dataset = build_dataset(cfgs.data.val)
val_loader = build_dataloader(
val_dataset,
samples_per_gpu=1,
workers_per_gpu=cfgs.data.workers_per_gpu,
num_gpus=world_size,
dist=world_size > 1,
shuffle=False
)
logging.info('Creating model: %s' % cfgs.model.type)
model = build_model(cfgs.model)
model.init_weights()
model.cuda()
model.train()
n_params = sum([p.numel() for p in model.parameters() if p.requires_grad])
logging.info('Trainable parameters: %d (%.1fM)' % (n_params, n_params / 1e6))
logging.info('Batch size per GPU: %d' % (cfgs.batch_size // world_size))
if world_size > 1:
model = MMDistributedDataParallel(model, [local_rank], broadcast_buffers=False)
else:
model = MMDataParallel(model, [0])
logging.info('Creating optimizer: %s' % cfgs.optimizer.type)
optimizer = build_optimizer(model, cfgs.optimizer)
runner = EpochBasedRunner(
model,
optimizer=optimizer,
work_dir=work_dir,
logger=logging.root,
max_epochs=cfgs.total_epochs,
meta=dict(),
)
runner.register_lr_hook(cfgs.lr_config)
runner.register_optimizer_hook(cfgs.optimizer_config)
runner.register_checkpoint_hook(cfgs.checkpoint_config)
runner.register_logger_hooks(cfgs.log_config)
runner.register_timer_hook(dict(type='IterTimerHook'))
runner.register_custom_hooks(dict(type='DistSamplerSeedHook'))
if cfgs.eval_config['interval'] > 0:
if world_size > 1:
runner.register_hook(DistEvalHook(val_loader, interval=cfgs.eval_config['interval'], gpu_collect=True))
else:
runner.register_hook(EvalHook(val_loader, interval=cfgs.eval_config['interval']))
if cfgs.resume_from is not None:
logging.info('Resuming from %s' % cfgs.resume_from)
runner.resume(cfgs.resume_from)
elif cfgs.load_from is not None:
logging.info('Loading checkpoint from %s' % cfgs.load_from)
if cfgs.revise_keys is not None:
load_checkpoint(
model, cfgs.load_from, map_location='cpu',
revise_keys=cfgs.revise_keys
)
else:
load_checkpoint(
model, cfgs.load_from, map_location='cpu',
)
runner.run([train_loader], [('train', 1)])
if __name__ == '__main__':
main()