-
Notifications
You must be signed in to change notification settings - Fork 175
/
Copy pathtrain.py
326 lines (270 loc) · 13.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""
Retrain the YOLO model for your own dataset.
"""
import math
import random
import os
import cv2
import numpy as np
import keras.backend as K
from keras.layers import Input, Lambda
from keras.models import Model
from keras.optimizers import Adam
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
import keras.layers as layers
from yolo4.model import preprocess_true_boxes, yolo4_body, yolo_loss
from yolo4.utils import get_random_data
from callback_eval import Evaluate
def _main():
print('Please visit https://github.com/miemie2013/Keras-YOLOv4 for more complete model!')
annotation_train_path = '2012_train.txt'
annotation_val_path = '2012_val.txt'
log_dir = 'logs/000/'
classes_path = 'model_data/voc_classes.txt'
anchors_path = 'model_data/yolo4_anchors.txt'
class_names = get_classes(classes_path)
num_classes = len(class_names)
class_index = ['{}'.format(i) for i in range(num_classes)]
anchors = get_anchors(anchors_path)
max_bbox_per_scale = 150
anchors_stride_base = np.array([
[[12, 16], [19, 36], [40, 28]],
[[36, 75], [76, 55], [72, 146]],
[[142, 110], [192, 243], [459, 401]]
])
# 一些预处理
anchors_stride_base = anchors_stride_base.astype(np.float32)
anchors_stride_base[0] /= 8
anchors_stride_base[1] /= 16
anchors_stride_base[2] /= 32
input_shape = (608, 608) # multiple of 32, hw
model, model_body = create_model(input_shape, anchors_stride_base, num_classes, load_pretrained=False, freeze_body=2, weights_path='yolo4_weight.h5')
logging = TensorBoard(log_dir=log_dir)
checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}.h5',
monitor='loss', save_weights_only=True, save_best_only=True, period=1)
reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.1, patience=3, verbose=1)
early_stopping = EarlyStopping(monitor='loss', min_delta=0, patience=10, verbose=1)
evaluation = Evaluate(model_body=model_body, anchors=anchors, class_names=class_index, score_threshold=0.05, tensorboard=logging, weighted_average=True, eval_file='2012_val.txt', log_dir=log_dir)
with open(annotation_train_path) as f:
lines_train = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines_train)
np.random.seed(None)
num_train = len(lines_train)
with open(annotation_val_path) as f:
lines_val = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines_val)
np.random.seed(None)
num_val = len(lines_val)
# Train with frozen layers first, to get a stable loss.
# Adjust num epochs to your dataset. This step is enough to obtain a not bad model.
if False:
model.compile(optimizer=Adam(lr=1e-3), loss={'yolo_loss': lambda y_true, y_pred: y_pred})
batch_size = 16
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
steps_per_epoch=max(1, num_train//batch_size),
epochs=50,
initial_epoch=0,
callbacks=[logging, checkpoint])
# Unfreeze and continue training, to fine-tune.
# Train longer if the result is not good.
if True:
for i in range(len(model.layers)):
model.layers[i].trainable = True
model.compile(optimizer=Adam(lr=1e-5), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change
print('Unfreeze all of the layers.')
batch_size = 4 # note that more GPU memory is required after unfreezing the body
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
model.fit_generator(data_generator_wrapper(lines_train, batch_size, anchors_stride_base, num_classes, max_bbox_per_scale, 'train'),
steps_per_epoch=max(1, num_train//batch_size),
epochs=50000,
initial_epoch=0,
callbacks=[logging, checkpoint, reduce_lr, early_stopping, evaluation])
# Further training if needed.
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
'''loads the anchors from a file'''
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
def create_model(input_shape, anchors_stride_base, num_classes, load_pretrained=True, freeze_body=2,
weights_path='model_data/yolo_weights.h5'):
'''create the training model'''
K.clear_session() # get a new session
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors_stride_base)
max_bbox_per_scale = 150
iou_loss_thresh = 0.7
model_body = yolo4_body(image_input, num_anchors, num_classes)
print('Create YOLOv4 model with {} anchors and {} classes.'.format(num_anchors*3, num_classes))
if load_pretrained:
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
print('Load weights {}.'.format(weights_path))
if freeze_body in [1, 2]:
# Freeze darknet53 body or freeze all but 3 output layers.
num = (250, len(model_body.layers)-3)[freeze_body-1]
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
y_true = [
layers.Input(name='input_2', shape=(None, None, 3, (num_classes + 5))), # label_sbbox
layers.Input(name='input_3', shape=(None, None, 3, (num_classes + 5))), # label_mbbox
layers.Input(name='input_4', shape=(None, None, 3, (num_classes + 5))), # label_lbbox
layers.Input(name='input_5', shape=(max_bbox_per_scale, 4)), # true_sbboxes
layers.Input(name='input_6', shape=(max_bbox_per_scale, 4)), # true_mbboxes
layers.Input(name='input_7', shape=(max_bbox_per_scale, 4)) # true_lbboxes
]
loss_list = layers.Lambda(yolo_loss, name='yolo_loss',
arguments={'num_classes': num_classes, 'iou_loss_thresh': iou_loss_thresh,
'anchors': anchors_stride_base})([*model_body.output, *y_true])
model = Model([model_body.input, *y_true], loss_list)
#model.summary()
return model, model_body
def random_fill(image, bboxes):
if random.random() < 0.5:
h, w, _ = image.shape
# 水平方向填充黑边,以训练小目标检测
if random.random() < 0.5:
dx = random.randint(int(0.5*w), int(1.5*w))
black_1 = np.zeros((h, dx, 3), dtype='uint8')
black_2 = np.zeros((h, dx, 3), dtype='uint8')
image = np.concatenate([black_1, image, black_2], axis=1)
bboxes[:, [0, 2]] += dx
# 垂直方向填充黑边,以训练小目标检测
else:
dy = random.randint(int(0.5*h), int(1.5*h))
black_1 = np.zeros((dy, w, 3), dtype='uint8')
black_2 = np.zeros((dy, w, 3), dtype='uint8')
image = np.concatenate([black_1, image, black_2], axis=0)
bboxes[:, [1, 3]] += dy
return image, bboxes
def random_horizontal_flip(image, bboxes):
if random.random() < 0.5:
_, w, _ = image.shape
image = image[:, ::-1, :]
bboxes[:, [0,2]] = w - bboxes[:, [2,0]]
return image, bboxes
def random_crop(image, bboxes):
if random.random() < 0.5:
h, w, _ = image.shape
max_bbox = np.concatenate([np.min(bboxes[:, 0:2], axis=0), np.max(bboxes[:, 2:4], axis=0)], axis=-1)
max_l_trans = max_bbox[0]
max_u_trans = max_bbox[1]
max_r_trans = w - max_bbox[2]
max_d_trans = h - max_bbox[3]
crop_xmin = max(0, int(max_bbox[0] - random.uniform(0, max_l_trans)))
crop_ymin = max(0, int(max_bbox[1] - random.uniform(0, max_u_trans)))
crop_xmax = max(w, int(max_bbox[2] + random.uniform(0, max_r_trans)))
crop_ymax = max(h, int(max_bbox[3] + random.uniform(0, max_d_trans)))
image = image[crop_ymin : crop_ymax, crop_xmin : crop_xmax]
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] - crop_xmin
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] - crop_ymin
return image, bboxes
def random_translate(image, bboxes):
if random.random() < 0.5:
h, w, _ = image.shape
max_bbox = np.concatenate([np.min(bboxes[:, 0:2], axis=0), np.max(bboxes[:, 2:4], axis=0)], axis=-1)
max_l_trans = max_bbox[0]
max_u_trans = max_bbox[1]
max_r_trans = w - max_bbox[2]
max_d_trans = h - max_bbox[3]
tx = random.uniform(-(max_l_trans - 1), (max_r_trans - 1))
ty = random.uniform(-(max_u_trans - 1), (max_d_trans - 1))
M = np.array([[1, 0, tx], [0, 1, ty]])
image = cv2.warpAffine(image, M, (w, h))
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] + tx
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] + ty
return image, bboxes
def image_preprocess(image, target_size, gt_boxes):
# 传入训练的图片是rgb格式
ih, iw = target_size
h, w = image.shape[:2]
interps = [ # 随机选一种插值方式
cv2.INTER_NEAREST,
cv2.INTER_LINEAR,
cv2.INTER_AREA,
cv2.INTER_CUBIC,
cv2.INTER_LANCZOS4,
]
method = np.random.choice(interps) # 随机选一种插值方式
scale_x = float(iw) / w
scale_y = float(ih) / h
image = cv2.resize(image, None, None, fx=scale_x, fy=scale_y, interpolation=method)
pimage = image.astype(np.float32) / 255.
if gt_boxes is None:
return pimage
else:
gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]] * scale_x
gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]] * scale_y
return pimage, gt_boxes
def parse_annotation(annotation, train_input_size, annotation_type):
line = annotation.split()
image_path = line[0]
if not os.path.exists(image_path):
raise KeyError("%s does not exist ... " %image_path)
image = np.array(cv2.imread(image_path))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 没有标注物品,即每个格子都当作背景处理
exist_boxes = True
if len(line) == 1:
bboxes = np.array([[10, 10, 101, 103, 0]])
exist_boxes = False
else:
bboxes = np.array([list(map(lambda x: int(float(x)), box.split(','))) for box in line[1:]])
if annotation_type == 'train':
# image, bboxes = random_fill(np.copy(image), np.copy(bboxes)) # 数据集缺乏小物体时打开
image, bboxes = random_horizontal_flip(np.copy(image), np.copy(bboxes))
image, bboxes = random_crop(np.copy(image), np.copy(bboxes))
image, bboxes = random_translate(np.copy(image), np.copy(bboxes))
image, bboxes = image_preprocess(np.copy(image), [train_input_size, train_input_size], np.copy(bboxes))
return image, bboxes, exist_boxes
def data_generator(annotation_lines, batch_size, anchors, num_classes, max_bbox_per_scale, annotation_type):
'''data generator for fit_generator'''
n = len(annotation_lines)
i = 0
#多尺度训练
train_input_sizes = [320, 352, 384, 416, 448, 480, 512, 544, 576, 608]
strides = np.array([8, 16, 32])
while True:
train_input_size = random.choice(train_input_sizes)
# 输出的网格数
train_output_sizes = train_input_size // strides
batch_image = np.zeros((batch_size, train_input_size, train_input_size, 3))
batch_label_sbbox = np.zeros((batch_size, train_output_sizes[0], train_output_sizes[0],
3, 5 + num_classes))
batch_label_mbbox = np.zeros((batch_size, train_output_sizes[1], train_output_sizes[1],
3, 5 + num_classes))
batch_label_lbbox = np.zeros((batch_size, train_output_sizes[2], train_output_sizes[2],
3, 5 + num_classes))
batch_sbboxes = np.zeros((batch_size, max_bbox_per_scale, 4))
batch_mbboxes = np.zeros((batch_size, max_bbox_per_scale, 4))
batch_lbboxes = np.zeros((batch_size, max_bbox_per_scale, 4))
for num in range(batch_size):
if i == 0:
np.random.shuffle(annotation_lines)
image, bboxes, exist_boxes = parse_annotation(annotation_lines[i], train_input_size, annotation_type)
label_sbbox, label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes = preprocess_true_boxes(bboxes, train_output_sizes, strides, num_classes, max_bbox_per_scale, anchors)
batch_image[num, :, :, :] = image
if exist_boxes:
batch_label_sbbox[num, :, :, :, :] = label_sbbox
batch_label_mbbox[num, :, :, :, :] = label_mbbox
batch_label_lbbox[num, :, :, :, :] = label_lbbox
batch_sbboxes[num, :, :] = sbboxes
batch_mbboxes[num, :, :] = mbboxes
batch_lbboxes[num, :, :] = lbboxes
i = (i + 1) % n
yield [batch_image, batch_label_sbbox, batch_label_mbbox, batch_label_lbbox, batch_sbboxes, batch_mbboxes, batch_lbboxes], np.zeros(batch_size)
def data_generator_wrapper(annotation_lines, batch_size, anchors, num_classes, max_bbox_per_scale, annotation_type):
n = len(annotation_lines)
if n==0 or batch_size<=0: return None
return data_generator(annotation_lines, batch_size, anchors, num_classes, max_bbox_per_scale, annotation_type)
if __name__ == '__main__':
_main()