diff --git a/BinaryRepresentations.png b/BinaryRepresentations.png new file mode 100644 index 0000000..d6e1655 Binary files /dev/null and b/BinaryRepresentations.png differ diff --git a/README.md b/README.md index e69de29..5d8e132 100644 --- a/README.md +++ b/README.md @@ -0,0 +1,51 @@ +# Adversarial Autoencoders for Compact Representations of 3D Point Clouds + +Authors: Maciej Zamorski, Maciej Zięba, Piotr Klukowski, Rafał Nowak, Karol Kurach, Wojciech Stokowiec, and Tomasz Trzciński + +![mainimg](https://github.com/MaciejZamorski/3d-AAE/blob/master/BinaryRepresentations.jpg) + +## Introduction +This is a PyTorch implementation for a family of 3dAAE models, a novel framework for learning continuous and binary representations of 3d point clouds based on Adversarial Autoencoder model, as presented in: + +M. Zamorski, M. Zięba, et al., Adversarial Autoencoders for Compact Representations of 3D Point Clouds, [arXiv preprint](https://arxiv.org/abs/1811.07605) (2018) +## Citation +``` +@article{zamorski2018adversarial, + title={Adversarial Autoencoders for Compact Representations of 3D Point Clouds}, + author={Zamorski, Maciej and Zi{\k{e}}ba, Maciej and Klukowski, Piotr and Nowak, Rafa{\l} and Kurach, Karol and Stokowiec, Wojciech and Trzci{\'n}ski, Tomasz}, + journal={arXiv preprint arXiv:1811.07605}, + year={2018} +} +``` + +## Requirements +Stored in `requirements.txt`, Python dependencies are: +``` +h5py +matplotlib +numpy +pandas +git+https://github.com/szagoruyko/pyinn.git@master +torch==0.4.1 +``` + +## Usage +### Training +Run an experiment with: + +`python3.6 experiments/train.py --config settings.json` + +where + +`train.py` - one of the training scripts from the `experiments` directory + +`settings.json` - JSON file with training settings and hyperparameter values created as shown in example `settings/hyperparams.json` + +### Evaluation +`python3.6 evaluation/find_best_epoch_on_validation.py --config settings.json` + +Calculates JSD distance between sampled point clouds and the validation set and presents the best epoch. + +`python3.6 evaluation/generate_data_for_metrics.py --config settings.json` + +Produce reconstructed and generated point clouds in a form of NumPy array to be used with validation methods from ["Learning Representations and Generative Models For 3D Point Clouds" repository](https://github.com/optas/latent_3d_points/blob/master/notebooks/compute_evaluation_metrics.ipynb) \ No newline at end of file