-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript_ROC_all.py
164 lines (140 loc) · 7.18 KB
/
script_ROC_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
from sklearn.datasets import load_svmlight_file
from sklearn.metrics import auc, roc_curve
plt.rcParams['figure.dpi'] = 300
plt.rcParams["font.family"] = "Arial"
plt.rcParams['font.size'] = 24
mpl.rcParams['xtick.labelsize'] = 14
mpl.rcParams['ytick.labelsize'] = 14
if __name__ == "__main__":
method_names = ['Gauss-Seidel','Shooting','Gauss-Southwell','Grafting','SubGradient','Max-K SubGradient','epsL1','Log-Barrier','SmoothL1 (short-cut)','SmoothL1 (continuation)','EM','SQP','ProjectionL1','InteriorPoint','Orthant-Wise','Pattern-Search','Projected SubGradient', 'sklearn', 'Proposed Method']
selected_methods = ['Gauss-Seidel','Shooting','Log-Barrier','ProjectionL1','InteriorPoint', 'sklearn', 'Proposed Method']
## matlab results
score_a1a = 1.0 - sio.loadmat("./results/a1a.mat")["score"]
score_a9a = 1.0 - sio.loadmat("./results/a9a.mat")["score"]
score_splice = 1.0 - sio.loadmat("./results/splice.mat")["score"]
score_ijcnn1 = 1.0 - sio.loadmat("./results/ijcnn1.mat")["score"]
score_liver = 1.0 - sio.loadmat("./results/liver-disorders.mat")["score"]
score_madelon = 1.0 - sio.loadmat("./results/madelon.mat")["score"]
score_leu = 1.0 - sio.loadmat("./results/leu.mat")["score"]
score_gisette = 1.0 - sio.loadmat("./results/gisette.mat")["score"]
print(score_a1a.shape)
print(score_a9a.shape)
print(score_splice.shape)
print(score_ijcnn1.shape)
print(score_liver.shape)
print(score_leu.shape)
print(score_madelon)
print(score_gisette)
## add our python results
score1 = sio.loadmat("./results/ijcnn1_ours.mat")["score_sk"]
score2 = sio.loadmat("./results/ijcnn1_ours.mat")["score_our"]
score_ijcnn1 = np.vstack([score_ijcnn1, score1, score2])
print(score_ijcnn1.shape)
score1 = sio.loadmat("./results/a1a_ours.mat")["score_sk"]
score2 = sio.loadmat("./results/a1a_ours.mat")["score_our"]
score_a1a = np.vstack([score_a1a, score1, score2])
print(score_a1a.shape)
score1 = sio.loadmat("./results/a9a_ours.mat")["score_sk"]
score2 = sio.loadmat("./results/a9a_ours.mat")["score_our"]
score_a9a = np.vstack([score_a9a, score1, score2])
print(score_a9a.shape)
score1 = sio.loadmat("./results/leu_ours.mat")["score_sk"]
score2 = sio.loadmat("./results/leu_ours.mat")["score_our"]
score_leu = np.vstack([score_leu, score1, score2])
print(score_leu.shape)
score1 = sio.loadmat("./results/splice_ours.mat")["score_sk"]
score2 = sio.loadmat("./results/splice_ours.mat")["score_our"]
score_splice = np.vstack([score_splice, score1, score2])
print(score_splice.shape)
score1 = sio.loadmat("./results/liver-disorders_ours.mat")["score_sk"]
score2 = sio.loadmat("./results/liver-disorders_ours.mat")["score_our"]
score_liver = np.vstack([score_liver, score1, score2])
print(score_liver.shape)
score1 = sio.loadmat("./results/leu_ours.mat")["score_sk"]
score2 = sio.loadmat("./results/leu_ours.mat")["score_our"]
score_leu = np.vstack([score_leu, score1, score2])
print(score_leu.shape)
score1 = sio.loadmat("./results/score_gisette_ours.mat")["score_sk"]
score2 = sio.loadmat("./results/score_gisette_ours.mat")["score_our"]
score_gisette = np.vstack([score_gisette, score1, score2])
print(score_gisette.shape)
fig, ax = plt.subplots(2, 3,sharex=True,sharey=True,figsize=(24, 16))
fig.tight_layout()
lw=3.0
line_styles = ['-.','--','-',':']
_, ytrue = load_svmlight_file('./datasets/a9a.t')
ytrue[ytrue==-1] = 0
for k, name in enumerate(method_names):
if name not in selected_methods:
continue
fpr, tpr, _ = roc_curve(ytrue, score_a9a[k])
roc_auc = auc(fpr, tpr)
ax[0,0].plot(fpr, tpr, lw=lw, label=f'{name} (area = {roc_auc:.3f})', linestyle=line_styles[k % len(line_styles)])
ax[0,0].set_title('a9a')
ax[0,0].legend(loc="lower right", prop={'size': 16})
ax[0,0].plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
_, ytrue = load_svmlight_file('./datasets/a1a.t')
ytrue[ytrue==-1] = 0
for k, name in enumerate(method_names):
if name not in selected_methods:
continue
fpr, tpr, _ = roc_curve(ytrue, score_a1a[k])
roc_auc = auc(fpr, tpr)
ax[0,1].plot(fpr, tpr, lw=lw, label=f'{name} (area = {roc_auc:.3f})', linestyle=line_styles[k % len(line_styles)])
ax[0,1].set_title('a1a')
ax[0,1].legend(loc="lower right", prop={'size': 16})
ax[0,1].plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
_, ytrue = load_svmlight_file('./datasets/leu.t')
ytrue[ytrue==-1] = 0
for k, name in enumerate(method_names):
if name not in selected_methods:
continue
fpr, tpr, _ = roc_curve(ytrue, score_leu[k])
roc_auc = auc(fpr, tpr)
ax[0,2].plot(fpr, tpr, lw=lw, label=f'{name} (area = {roc_auc:.3f})', linestyle=line_styles[k % len(line_styles)])
ax[0,2].set_title('leu')
ax[0,2].legend(loc="lower right", prop={'size': 16})
ax[0,2].plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
_, ytrue = load_svmlight_file('./datasets/splice.t')
ytrue[ytrue==-1] = 0
for k, name in enumerate(method_names):
if name not in selected_methods:
continue
fpr, tpr, _ = roc_curve(ytrue, score_splice[k])
roc_auc = auc(fpr, tpr)
ax[1,0].plot(fpr, tpr, lw=lw, label=f'{name} (area = {roc_auc:.3f})', linestyle=line_styles[k % len(line_styles)])
ax[1,0].set_title('splice')
ax[1,0].legend(loc="lower right", prop={'size': 16})
ax[1,0].plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
_, ytrue = load_svmlight_file('./datasets/ijcnn1.t')
ytrue[ytrue==-1] = 0
for k, name in enumerate(method_names):
if name not in selected_methods:
continue
fpr, tpr, _ = roc_curve(ytrue, score_ijcnn1[k])
roc_auc = auc(fpr, tpr)
ax[1,1].plot(fpr, tpr, lw=lw, label=f'{name} (area = {roc_auc:.3f})', linestyle=line_styles[k % len(line_styles)])
ax[1,1].set_title('ijcnn1')
ax[1,1].legend(loc="lower right", prop={'size': 16})
ax[1,1].plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
_, ytrue = load_svmlight_file('./datasets/liver-disorders.t')
ytrue[ytrue==-1] = 0
for k, name in enumerate(method_names):
if name not in selected_methods:
continue
fpr, tpr, _ = roc_curve(ytrue, score_liver[k])
roc_auc = auc(fpr, tpr)
ax[1,2].plot(fpr, tpr, lw=lw, label=f'{name} (area = {roc_auc:.3f})', linestyle=line_styles[k % len(line_styles)])
ax[1,2].set_title('liver-disorders')
ax[1,2].legend(loc="lower right", prop={'size': 16})
ax[1,2].plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
fig.text(0.5, 0.001, 'False Positive Rate', ha='center',fontsize=28)
fig.text(0.001, 0.5, 'True Positive Rate', va='center', rotation='vertical',fontsize=28)
plt.setp(ax, xlim=[0.0, 1.0], ylim=[0.0, 1.05])
plt.savefig(f'./Chart_ROC_all.png', format='png', bbox_inches='tight')
plt.savefig(f'./Chart_ROC_all.eps', format='eps', bbox_inches='tight')
plt.show()