-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
936 lines (770 loc) · 40.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
from __future__ import absolute_import, division, print_function
import pprint
import argparse
import logging
import os
import random
import sys
import pickle
import copy
import collections
import math
import numpy as np
import numpy
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler,TensorDataset
from torch.nn import CrossEntropyLoss, MSELoss
from transformer import BertForSequenceClassification,WEIGHTS_NAME, CONFIG_NAME
from transformer.modeling_quant import BertForSequenceClassification as QuantBertForSequenceClassification
from transformer import BertTokenizer
from transformer import BertAdam
from transformer import BertConfig
from transformer import QuantizeLinear, BertSelfAttention, FP_BertSelfAttention
from utils_glue import *
from bertviz import model_view
from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import torch.nn.functional as F
import time
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
logger = logging.getLogger()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
index = 0
with open(vocab_file, "r", encoding="utf-8") as reader:
while True:
token = reader.readline()
if not token:
break
token = token.strip()
vocab[index] = token
index += 1
return vocab
def get_tensor_data(output_mode, features):
if output_mode == "classification":
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
elif output_mode == "regression":
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float)
all_seq_lengths = torch.tensor([f.seq_length for f in features], dtype=torch.long)
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
tensor_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,all_label_ids, all_seq_lengths)
return tensor_data, all_label_ids
def do_eval(model, task_name, eval_dataloader,
device, output_mode, eval_labels, num_labels, teacher_model=None):
eval_loss = 0
nb_eval_steps = 0
preds = []
for batch_ in eval_dataloader:
batch_ = tuple(t.to(device) for t in batch_)
with torch.no_grad():
input_ids, input_mask, segment_ids, label_ids, seq_lengths = batch_
# teacher attnmap test
if teacher_model is not None:
teacher_logits, teacher_atts, teacher_reps, teacher_probs, teacher_values = teacher_model(input_ids, segment_ids, input_mask)
logits, student_atts, student_reps, student_probs, student_values = model(input_ids, segment_ids, input_mask)
else:
logits, _, _, _, _ = model(input_ids, segment_ids, input_mask)
# create eval loss and other metric required by the task
if output_mode == "classification":
loss_fct = CrossEntropyLoss()
tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
elif output_mode == "regression":
loss_fct = MSELoss()
tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if len(preds) == 0:
preds.append(logits.detach().cpu().numpy())
else:
preds[0] = np.append(
preds[0], logits.detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
preds = preds[0]
if output_mode == "classification":
preds = np.argmax(preds, axis=1)
elif output_mode == "regression":
preds = np.squeeze(preds)
result = compute_metrics(task_name, preds, eval_labels.numpy())
result['eval_loss'] = eval_loss
return result
def soft_cross_entropy(predicts, targets):
student_likelihood = torch.nn.functional.log_softmax(predicts, dim=-1)
targets_prob = torch.nn.functional.softmax(targets, dim=-1)
return torch.sum((- targets_prob * student_likelihood), dim=-1).mean()
def main():
# ================================================================================ #
# ArgParse
# ================================================================================ #
parser = argparse.ArgumentParser()
# Options for training setting
parser.add_argument("--data_dir",
default='data',
type=str,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--model_dir",
default='models',
type=str,
help="The model dir.")
parser.add_argument("--teacher_model",
default=None,
type=str,
help="The models directory.")
parser.add_argument("--student_model",
default=None,
type=str,
help="Student model directory.")
parser.add_argument("--task_name",
default='sst-2',
type=str,
help="The name of the task to train.")
parser.add_argument("--output_dir",
default='output',
type=str,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--learning_rate",
default=2e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--save_fp_model',
action='store_true',
help="Whether to save fp32 model")
parser.add_argument('--save_quantized_model',
default=False, type=str2bool,
help="Whether to save quantized model")
parser.add_argument("--weight_bits",
default=2,
type=int,
choices=[2,4,8],
help="Quantization bits for weight.")
parser.add_argument("--input_bits",
default=8,
type=int,
help="Quantization bits for activation.")
parser.add_argument("--gpus",
default=1,
type=int,
help="Number of GPUs to use")
parser.add_argument("--clip_val",
default=2.5,
type=float,
help="Initial clip value.")
parser.add_argument('--act_quant',
default=True, type=str2bool,
help="Whether to quantize activation")
parser.add_argument('--weight_quant',
default=True, type=str2bool,
help="Whether to quantize activation")
parser.add_argument('--neptune',
default=True, type=str2bool,
help="neptune logging option")
parser.add_argument('--aug_train',
default =False, type=str2bool,
help="Whether to use augmented data or not")
parser.add_argument("--aug_N",
default=30,
type=int,
help="Data Augmentation N Number")
parser.add_argument("--exp_name",
default="",
type=str,
help="Output Directory Name")
# Options for Distillation
parser.add_argument('--pred_distill',
default =False, type=str2bool,
help="prediction distill option")
parser.add_argument('--attn_distill',
default =True, type=str2bool,
help="attention Score Distill Option")
parser.add_argument('--rep_distill',
default =True, type=str2bool,
help="Transformer Layer output Distill Option")
parser.add_argument('--attnmap_distill',
default =True, type=str2bool,
help="attention Map Distill Option")
parser.add_argument('--context_distill',
default =True, type=str2bool,
help="Context Value Distill Option")
parser.add_argument('--output_distill',
default =False, type=str2bool,
help="Context Value Distill Option")
parser.add_argument('--sa_output_distill',
default =False, type=str2bool,
help="MSA output Distill Option")
parser.add_argument('--gt_loss',
default =True, type=str2bool,
help="Ground Truth Option")
parser.add_argument('--bert',
default ="base", type=str,
help="which bert model to be use (base, large)"
)
parser.add_argument("--map_coeff",
default=1,
type=float,
help="Attention Map Loss Coefficient")
parser.add_argument("--output_coeff",
default=1,
type=float,
help="Attention Output Loss Coefficient")
args = parser.parse_args()
# ================================================================================ #
# Logging setup
# ================================================================================ #
# Use Neptune for logging
if args.neptune:
import neptune.new as neptune
# Neptune Init
run = neptune.init(project='' + args.task_name.upper(),
api_token='')
else:
run = None
# ================================================================================ #
# Load Directory
# ================================================================================ #
# Exp Name
exp_name = args.exp_name
exp_name += f"_{args.bert}"
if args.attn_distill:
exp_name += "_S"
if args.attnmap_distill:
exp_name += "_M"
if args.context_distill:
exp_name += "_C"
if args.output_distill:
exp_name += "_O"
if args.sa_output_distill:
exp_name += "_SA"
exp_name += f"_{args.seed}"
args.exp_name = exp_name
if args.aug_train:
logger.info(f'DA QAT')
logger.info(f'EXP SET: {exp_name}')
logger.info(f'TASK: {args.task_name}')
logger.info(f'MAP-COEFF: {args.map_coeff}')
logger.info(f'OUTPUT-COEFF: {args.output_coeff}')
logger.info(f"SIZE: {args.bert}")
logger.info(f"SEED: {args.seed}")
logger.info(f'EPOCH: {args.num_train_epochs}')
# logger.info('The args: {}'.format(args))
# GLUE Dataset Setting
task_name = args.task_name.lower()
data_dir = os.path.join(args.data_dir,task_name)
processed_data_dir = os.path.join(data_dir,'preprocessed')
if not os.path.exists(processed_data_dir):
os.mkdir(processed_data_dir)
# BERT Large Option
if args.bert == "large":
args.model_dir = os.path.join(args.model_dir, "BERT_large")
args.output_dir = os.path.join(args.output_dir, "BERT_large")
# Model Save Directory
output_dir = os.path.join(args.output_dir,task_name)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
if args.save_quantized_model:
output_quant_dir = os.path.join(output_dir, 'exploration')
if not os.path.exists(output_quant_dir):
os.mkdir(output_quant_dir)
if not os.path.exists(output_quant_dir):
os.makedirs(output_quant_dir)
output_quant_dir = os.path.join(output_quant_dir, args.exp_name)
if not os.path.exists(output_quant_dir):
os.makedirs(output_quant_dir)
# ================================================================================ #
# Load Pths
# ================================================================================ #
# Load task-specific fine-tuned model file
args.student_model = os.path.join(args.model_dir,task_name)
args.teacher_model = os.path.join(args.model_dir,task_name)
processors = {
"cola": ColaProcessor,
"mnli": MnliProcessor,
"mnli-mm": MnliMismatchedProcessor,
"mrpc": MrpcProcessor,
"sst-2": Sst2Processor,
"sts-b": StsbProcessor,
"qqp": QqpProcessor,
"qnli": QnliProcessor,
"rte": RteProcessor
}
output_modes = {
"cola": "classification",
"mnli": "classification",
"mrpc": "classification",
"sst-2": "classification",
"sts-b": "regression",
"qqp": "classification",
"qnli": "classification",
"rte": "classification"
}
default_params = {
"cola": {"max_seq_length": 64,"batch_size":16,"eval_step": 400 if args.aug_train else 50}, # No Aug : 50 Aug : 400
"mnli": {"max_seq_length": 128,"batch_size":32,"eval_step":8000},
"mrpc": {"max_seq_length": 128,"batch_size":32,"eval_step":50},
"sst-2": {"max_seq_length": 64,"batch_size":32,"eval_step":100},
"sts-b": {"max_seq_length": 128,"batch_size":32,"eval_step":100},
"qqp": {"max_seq_length": 128,"batch_size":32,"eval_step":1000},
"qnli": {"max_seq_length": 128,"batch_size":32,"eval_step":1000},
"rte": {"max_seq_length": 128,"batch_size":32,"eval_step":100 if args.aug_train else 20}
}
acc_tasks = ["mnli", "mrpc", "sst-2", "qqp", "qnli", "rte"]
corr_tasks = ["sts-b"]
mcc_tasks = ["cola"]
# ================================================================================ #
# prepare devices
# ================================================================================ #
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = args.gpus
# ================================================================================ #
# prepare seed
# ================================================================================ #
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if task_name in default_params:
args.batch_size = default_params[task_name]["batch_size"]
if n_gpu > 0:
args.batch_size = int(args.batch_size*n_gpu)
args.max_seq_length = default_params[task_name]["max_seq_length"]
args.eval_step = default_params[task_name]["eval_step"]
processor = processors[task_name]()
output_mode = output_modes[task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
# ================================================================================ #
# Load Vocab FIle -> Tokenization
# ================================================================================ #
tokenizer = BertTokenizer.from_pretrained(args.teacher_model, do_lower_case=True)
# save vocab file for logging
tokenizer.save_vocabulary("./")
# ================================================================================ #
# Dataset Setup (with DA)
# ================================================================================ #
if args.aug_train: # Data Augmentation
try:
train_file = os.path.join(processed_data_dir,f'aug_data_{args.aug_N}.pkl')
train_features = pickle.load(open(train_file,'rb'))
except:
train_examples = processor.get_aug_examples(data_dir, args.aug_N)
train_features = convert_examples_to_features(train_examples, label_list,
args.max_seq_length, tokenizer, output_mode)
with open(train_file, 'wb') as f:
pickle.dump(train_features, f, protocol=pickle.HIGHEST_PROTOCOL)
else:
try:
train_file = os.path.join(processed_data_dir,'data.pkl')
train_features = pickle.load(open(train_file,'rb'))
except:
train_examples = processor.get_train_examples(data_dir)
train_features = convert_examples_to_features(train_examples, label_list,
args.max_seq_length, tokenizer, output_mode)
with open(train_file, 'wb') as f:
pickle.dump(train_features, f, protocol=pickle.HIGHEST_PROTOCOL)
num_train_epochs = args.num_train_epochs
num_train_optimization_steps = math.ceil(len(train_features) / args.batch_size) * num_train_epochs
train_data, _ = get_tensor_data(output_mode, train_features)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.batch_size)
# Test Data load
try:
test_file = train_file = os.path.join(processed_data_dir,'test.pkl')
test_features = pickle.load(open(test_file,'rb'))
except:
test_examples = processor.get_test_examples(data_dir)
test_features = convert_examples_to_features(test_examples, label_list, args.max_seq_length, tokenizer, output_mode)
with open(test_file, 'wb') as f:
pickle.dump(test_features, f, protocol=pickle.HIGHEST_PROTOCOL)
# Dev Data load
try:
dev_file = train_file = os.path.join(processed_data_dir,'dev.pkl')
eval_features = pickle.load(open(dev_file,'rb'))
except:
eval_examples = processor.get_dev_examples(data_dir)
eval_features = convert_examples_to_features(eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
with open(dev_file, 'wb') as f:
pickle.dump(eval_features, f, protocol=pickle.HIGHEST_PROTOCOL)
eval_data, eval_labels = get_tensor_data(output_mode, eval_features)
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)
if task_name == "mnli":
processor = processors["mnli-mm"]()
try:
dev_mm_file = train_file = os.path.join(processed_data_dir,'dev-mm_data.pkl')
mm_eval_features = pickle.load(open(dev_mm_file,'rb'))
except:
mm_eval_examples = processor.get_dev_examples(data_dir)
mm_eval_features = convert_examples_to_features(
mm_eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
with open(dev_mm_file, 'wb') as f:
pickle.dump(mm_eval_features, f, protocol=pickle.HIGHEST_PROTOCOL)
mm_eval_data, mm_eval_labels = get_tensor_data(output_mode, mm_eval_features)
# logger.info(" Num examples = %d", len(mm_eval_features))
mm_eval_sampler = SequentialSampler(mm_eval_data)
mm_eval_dataloader = DataLoader(mm_eval_data, sampler=mm_eval_sampler,
batch_size=args.batch_size)
# ================================================================================ #
# Build Teacher Model
# ================================================================================ #
teacher_model = BertForSequenceClassification.from_pretrained(args.teacher_model, num_labels=num_labels)
teacher_model.to(device)
teacher_model.eval()
if n_gpu > 1:
teacher_model = torch.nn.DataParallel(teacher_model)
result = do_eval(teacher_model, task_name, eval_dataloader,
device, output_mode, eval_labels, num_labels)
# logger.info(f"Teacher Model Accuracy : {result}")
# ================================================================================ #
# Save Teacher Model Peroformance for KD Training
# ================================================================================ #
if task_name in acc_tasks:
if task_name in ['sst-2','mnli','qnli','rte']:
fp32_performance = f"acc:{result['acc']}"
fp32_score = result['acc']
elif task_name in ['mrpc','qqp']:
fp32_performance = f"f1/acc:{result['f1']}/{result['acc']} avg : {(result['f1'] + result['acc'])*50}"
fp32_score = (result['f1'] + result['acc'])*50
if task_name in corr_tasks:
fp32_performance = f"pearson/spearmanr:{result['pearson']}/{result['spearmanr']} corr:{result['corr']}"
fp32_score = result['corr']*100
if task_name in mcc_tasks:
fp32_performance = f"mcc:{result['mcc']}"
fp32_score = result['mcc']
if task_name == "mnli":
result = do_eval(teacher_model, 'mnli-mm', mm_eval_dataloader,
device, output_mode, mm_eval_labels, num_labels)
# logger.info(result)
fp32_performance += f" mm-acc:{result['acc']}"
fp32_score = result['acc']
fp32_performance = task_name +' fp32 ' + fp32_performance
# ================================================================================ #
# Build Student Model
# ================================================================================ #
student_config = BertConfig.from_pretrained(args.student_model,
quantize_act=args.act_quant,
quantize_weight=args.weight_quant,
weight_bits = args.weight_bits,
input_bits = args.input_bits,
clip_val = args.clip_val,
)
student_model = QuantBertForSequenceClassification.from_pretrained(args.student_model, config = student_config, num_labels=num_labels)
student_model.to(device)
for name, module in student_model.named_modules():
if isinstance(module, QuantizeLinear):
module.act_flag = args.act_quant
module.weight_flag = args.weight_quant
# ================================================================================ #
# Training Setting
# ================================================================================ #
if n_gpu > 1:
student_model = torch.nn.DataParallel(student_model)
param_optimizer = list(student_model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
]
schedule = 'warmup_linear'
optimizer = BertAdam(optimizer_grouped_parameters,
schedule=schedule,
lr=args.learning_rate,
warmup=0.1,
t_total=num_train_optimization_steps)
loss_mse = MSELoss()
norm_func = torch.linalg.norm
loss_cos = torch.nn.CosineSimilarity(dim=-1, eps=1e-6)
global_step = 0
best_dev_acc = 0.0
previous_best = None
tr_loss = 0.
tr_att_loss = 0.
tr_rep_loss = 0.
tr_cls_loss = 0.
# ================================================================================ #
# Training Start
# ================================================================================ #
# logger.info("***** Running training *****")
# logger.info(" Num examples = %d", len(train_features))
# logger.info(" Batch size = %d", args.batch_size)
# logger.info(" Num steps = %d", num_train_optimization_steps)
# Loss Init AverageMeter
l_gt_loss = AverageMeter()
l_attmap_loss = AverageMeter()
l_att_loss = AverageMeter()
l_rep_loss = AverageMeter()
l_cls_loss = AverageMeter()
l_output_loss = AverageMeter()
l_sa_output_loss = AverageMeter()
l_context_loss = AverageMeter()
l_loss = AverageMeter()
for epoch_ in range(int(num_train_epochs)):
# for batch in tqdm(train_dataloader,desc=f"Epoch_{epoch_}", mininterval=0.01, ascii=True, leave=False):
for batch in train_dataloader:
student_model.train()
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids, seq_lengths = batch
# tmp loss init
att_loss = 0.
attmap_loss = 0.
rep_loss = 0.
cls_loss = 0.
attscore_loss = 0.
output_loss = 0.
sa_output_loss = 0.
context_loss = 0.
loss = 0.
with torch.no_grad():
teacher_logits, teacher_atts, teacher_reps, teacher_probs, teacher_attn_blocks = teacher_model(input_ids, segment_ids, input_mask)
# attn_blocks -> 0: Layer Context, 1: Attention Sub-layer Output, 2: Self-Attention Output
student_logits, student_atts, student_reps, student_probs, student_attn_blocks = student_model(input_ids, segment_ids, input_mask)
if args.gt_loss:
if output_mode == "classification":
lprobs = torch.nn.functional.log_softmax(student_logits, dim=-1)
loss = torch.nn.functional.nll_loss(lprobs, label_ids, reduction='sum')
elif output_mode == "regression":
loss = loss_mse(student_logits, teacher_logits)
l_gt_loss.update(loss.item())
# Prediction Loss
if args.pred_distill:
if output_mode == "classification":
cls_loss = soft_cross_entropy(student_logits,teacher_logits)
elif output_mode == "regression":
cls_loss = MSELoss()(student_logits, teacher_logits)
else:
cls_loss = soft_cross_entropy(student_logits,teacher_logits)
l_cls_loss.update(cls_loss.item())
# Attention Context Loss
if args.context_distill:
for i, (student_attn_block, teacher_attn_block) in enumerate(zip(student_attn_blocks, teacher_attn_blocks)):
tmp_loss = MSELoss()(student_attn_block[0], teacher_attn_block[0])
context_loss += tmp_loss
l_context_loss.update(context_loss.item())
# Attention Output Loss (Proposed)
if args.output_distill:
for i, (student_attn_block, teacher_attn_block) in enumerate(zip(student_attn_blocks, teacher_attn_blocks)):
tmp_loss = MSELoss()(student_attn_block[1], teacher_attn_block[1])
output_loss += tmp_loss
l_output_loss.update(output_loss.item())
# SA Output Loss
if args.sa_output_distill:
for i, (student_attn_block, teacher_attn_block) in enumerate(zip(student_attn_blocks, teacher_attn_blocks)):
tmp_loss = MSELoss()(student_attn_block[2], teacher_attn_block[2])
sa_output_loss += tmp_loss
l_sa_output_loss.update(sa_output_loss.item())
# Attention Score Loss (TernaryBERT)
if args.attn_distill:
for i, (student_att, teacher_att) in enumerate(zip(student_atts, teacher_atts)):
student_att = torch.where(student_att <= -1e2, torch.zeros_like(student_att).to("cuda"),
student_att)
teacher_att = torch.where(teacher_att <= -1e2, torch.zeros_like(teacher_att).to("cuda"),
teacher_att)
tmp_loss = MSELoss()(student_att, teacher_att)
attscore_loss += tmp_loss
l_att_loss.update(attscore_loss.item())
# Attention Map Loss (Proposed)
if args.attnmap_distill:
BATCH_SIZE = student_probs[0].shape[0]
NUM_HEADS = student_probs[0].shape[1]
MAX_SEQ = student_probs[0].shape[2]
mask = torch.zeros(BATCH_SIZE, NUM_HEADS, MAX_SEQ, MAX_SEQ, dtype=torch.float32)
mask_seq = []
for sent in range(BATCH_SIZE):
s = seq_lengths[sent]
mask[sent, :, :s, :s] = 1.0
mask = mask.to("cuda")
for i, (student_prob, teacher_prob) in enumerate(zip(student_probs, teacher_probs)):
# KLD(teacher || student)
# = sum (p(t) log p(t)) - sum(p(t) log p(s))
# = (-entropy) - (-cross_entropy)
student = torch.clamp_min(student_prob, 1e-8)
teacher = torch.clamp_min(teacher_prob, 1e-8)
# p(t) log p(s) = negative cross entropy
neg_cross_entropy = teacher * torch.log(student) * mask
neg_cross_entropy = torch.sum(neg_cross_entropy, dim=-1) # (b, h, s, s) -> (b, h, s)
neg_cross_entropy = torch.sum(neg_cross_entropy, dim=-1) / seq_lengths.view(-1, 1) # (b, h, s) -> (b, h)
# p(t) log p(t) = negative entropy
neg_entropy = teacher * torch.log(teacher) * mask
neg_entropy = torch.sum(neg_entropy, dim=-1) # (b, h, s, s) -> (b, h, s)
neg_entropy = torch.sum(neg_entropy, dim=-1) / seq_lengths.view(-1, 1) # (b, h, s) -> (b, h)
kld_loss = neg_entropy - neg_cross_entropy
kld_loss_mean = torch.mean(kld_loss)
# Other Option (Cosine Similarity, MSE Loss)
# attnmap_mse_loss = loss_mse(student, teacher)
# kld_loss_sum = torch.nn.functional.cosine_similarity(student, teacher, -1).mean()
attmap_loss += kld_loss_mean
l_attmap_loss.update(attmap_loss.item())
# Rep Distill
if args.rep_distill:
for i, (student_rep, teacher_rep) in enumerate(zip(student_reps, teacher_reps)):
tmp_loss = MSELoss()(student_rep, teacher_rep)
rep_loss += tmp_loss
l_rep_loss.update(rep_loss.item())
loss += cls_loss + rep_loss + (attmap_loss * args.map_coeff) + (output_loss * args.output_coeff) + sa_output_loss + attscore_loss + context_loss
l_loss.update(loss.item())
if n_gpu > 1:
loss = loss.mean()
# Zero Step Loss Update
if global_step == 0:
if run is not None:
run["loss/total_loss"].log(value=l_loss.avg, step=global_step)
run["loss/gt_loss_loss"].log(value=l_gt_loss.avg, step=global_step)
run["loss/att_loss_loss"].log(value=l_att_loss.avg, step=global_step)
run["loss/rep_loss_loss"].log(value=l_rep_loss.avg, step=global_step)
run["loss/cls_loss_loss"].log(value=l_cls_loss.avg, step=global_step)
run["loss/output_loss_loss"].log(value=l_output_loss.avg, step=global_step)
run["loss/attmap_loss_loss"].log(value=l_attmap_loss.avg, step=global_step)
run["metrics/lr"].log(value=optimizer.get_lr()[0], step=global_step)
loss.backward()
optimizer.step()
optimizer.zero_grad()
global_step += 1
# ================================================================================ #
# Evaluation
# ================================================================================ #
if global_step % args.eval_step == 0 or global_step == num_train_optimization_steps-1: # period or last step
# logger.info("***** Running evaluation *****")
# logger.info("{} step of {} steps".format(global_step, num_train_optimization_steps))
# if previous_best is not None:
# logger.info(f"{fp32_performance}")
# logger.info(f"==> Previous Best = {previous_best}")
student_model.eval()
result = do_eval(student_model, task_name, eval_dataloader,
device, output_mode, eval_labels, num_labels, teacher_model=teacher_model)
result['global_step'] = global_step
result['cls_loss'] = l_cls_loss.avg
result['att_loss'] = l_att_loss.avg
result['rep_loss'] = l_rep_loss.avg
result['loss'] = l_loss.avg
if run is not None:
run["loss/total_loss"].log(value=l_loss.avg, step=global_step)
run["loss/gt_loss_loss"].log(value=l_gt_loss.avg, step=global_step)
run["loss/att_loss_loss"].log(value=l_att_loss.avg, step=global_step)
run["loss/rep_loss_loss"].log(value=l_rep_loss.avg, step=global_step)
run["loss/cls_loss_loss"].log(value=l_cls_loss.avg, step=global_step)
run["loss/output_loss_loss"].log(value=l_output_loss.avg, step=global_step)
run["loss/sa_output_loss_loss"].log(value=l_sa_output_loss.avg, step=global_step)
run["loss/attmap_loss_loss"].log(value=l_attmap_loss.avg, step=global_step)
run["metrics/lr"].log(value=optimizer.get_lr()[0], step=global_step)
if task_name=='cola':
eval_score = result["mcc"]
if run is not None:
run["metrics/mcc"].log(value=result['mcc'], step=global_step)
eval_result = result["mcc"]
# logger.info(f"Eval Result is {result['mcc']}")
elif task_name in ['sst-2','mnli','mnli-mm','qnli','rte','wnli']:
eval_score = result["acc"]
if run is not None:
run["metrics/acc"].log(value=result['acc'],step=global_step)
# logger.info(f"Eval Result is {result['acc']}")
eval_result = result["acc"]
elif task_name in ['mrpc','qqp']:
eval_score = result["acc_and_f1"]
if run is not None:
run["metrics/acc_and_f1"].log(value=result['acc_and_f1'],step=global_step)
# logger.info(f"Eval Result is {result['acc']}, {result['f1']}")
eval_result = result["acc_and_f1"]
else:
eval_score = result["corr"]
if run is not None:
run["metrics/corr"].log(value=result['corr'],step=global_step)
# logger.info(f"Eval Result is {result['corr']}")
eval_result = result["corr"]
# Save Model
save_model = False
if task_name in acc_tasks and result['acc'] > best_dev_acc:
if task_name in ['sst-2','mnli','qnli','rte']:
previous_best = f"{result['acc']*100}"
elif task_name in ['mrpc','qqp']:
previous_best = f"{(result['f1'] + result['acc'])*50}"
best_dev_acc = result['acc']
save_model = True
if task_name in corr_tasks and result['corr'] > best_dev_acc:
previous_best = f"{result['corr']*100}"
best_dev_acc = result['corr']
save_model = True
if task_name in mcc_tasks and result['mcc'] > best_dev_acc:
previous_best = f"{result['mcc']*100}"
best_dev_acc = result['mcc']
save_model = True
if save_model:
# logger.info("====> Best Score ")
# Test mnli-mm
if task_name == "mnli":
result = do_eval(student_model, 'mnli-mm', mm_eval_dataloader,
device, output_mode, mm_eval_labels, num_labels, teacher_model=teacher_model)
previous_best+= f"mm-acc:{result['acc']}"
if args.save_fp_model:
# logger.info("***** Save full precision model *****")
model_to_save = student_model.module if hasattr(student_model, 'module') else student_model
output_model_file = os.path.join(output_dir, WEIGHTS_NAME)
output_config_file = os.path.join(output_dir, CONFIG_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(output_dir)
if args.save_quantized_model:
# logger.info("====> Save quantized model *****")
output_quant_dir = os.path.join(output_dir, 'exploration')
if not os.path.exists(output_quant_dir):
os.mkdir(output_quant_dir)
if not os.path.exists(output_quant_dir):
os.makedirs(output_quant_dir)
output_quant_dir = os.path.join(output_quant_dir, args.exp_name)
if not os.path.exists(output_quant_dir):
os.makedirs(output_quant_dir)
# uncomment if you want to save your quantized model
# model_to_save = student_model.module if hasattr(student_model, 'module') else student_model
# quant_model = copy.deepcopy(model_to_save)
# output_model_file = os.path.join(output_quant_dir, WEIGHTS_NAME)
# output_config_file = os.path.join(output_quant_dir, CONFIG_NAME)
# torch.save(quant_model.state_dict(), output_model_file)
# model_to_save.config.to_json_file(output_config_file)
# tokenizer.save_vocabulary(output_quant_dir)
logger.info(f"==> Previous Best = {previous_best}")
logger.info(f"==> Last Result = {result}")
# Save Best Score
if args.save_quantized_model:
best_txt = os.path.join(output_quant_dir, "best_info.txt")
last_txt = os.path.join(output_quant_dir, "last_info.txt")
with open(best_txt, "w") as f_w:
f_w.write(previous_best)
with open(last_txt, "w") as f_w:
f_w.write(f"{eval_result*100}")
if __name__ == "__main__":
main()