-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathUCTransNet.py
139 lines (120 loc) · 5.08 KB
/
UCTransNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# -*- coding: utf-8 -*-
# @Time : 2021/7/8 8:59 上午
# @File : UCTransNet.py
# @Software: PyCharm
import torch.nn as nn
import torch
import torch.nn.functional as F
from .CTrans import ChannelTransformer
def get_activation(activation_type):
activation_type = activation_type.lower()
if hasattr(nn, activation_type):
return getattr(nn, activation_type)()
else:
return nn.ReLU()
def _make_nConv(in_channels, out_channels, nb_Conv, activation='ReLU'):
layers = []
layers.append(ConvBatchNorm(in_channels, out_channels, activation))
for _ in range(nb_Conv - 1):
layers.append(ConvBatchNorm(out_channels, out_channels, activation))
return nn.Sequential(*layers)
class ConvBatchNorm(nn.Module):
"""(convolution => [BN] => ReLU)"""
def __init__(self, in_channels, out_channels, activation='ReLU'):
super(ConvBatchNorm, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels,
kernel_size=3, padding=1)
self.norm = nn.BatchNorm2d(out_channels)
self.activation = get_activation(activation)
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
return self.activation(out)
class DownBlock(nn.Module):
"""Downscaling with maxpool convolution"""
def __init__(self, in_channels, out_channels, nb_Conv, activation='ReLU'):
super(DownBlock, self).__init__()
self.maxpool = nn.MaxPool2d(2)
self.nConvs = _make_nConv(in_channels, out_channels, nb_Conv, activation)
def forward(self, x):
out = self.maxpool(x)
return self.nConvs(out)
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class CCA(nn.Module):
"""
CCA Block
"""
def __init__(self, F_g, F_x):
super().__init__()
self.mlp_x = nn.Sequential(
Flatten(),
nn.Linear(F_x, F_x))
self.mlp_g = nn.Sequential(
Flatten(),
nn.Linear(F_g, F_x))
self.relu = nn.ReLU(inplace=True)
def forward(self, g, x):
# channel-wise attention
avg_pool_x = F.avg_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
channel_att_x = self.mlp_x(avg_pool_x)
avg_pool_g = F.avg_pool2d( g, (g.size(2), g.size(3)), stride=(g.size(2), g.size(3)))
channel_att_g = self.mlp_g(avg_pool_g)
channel_att_sum = (channel_att_x + channel_att_g)/2.0
scale = torch.sigmoid(channel_att_sum).unsqueeze(2).unsqueeze(3).expand_as(x)
x_after_channel = x * scale
out = self.relu(x_after_channel)
return out
class UpBlock_attention(nn.Module):
def __init__(self, in_channels, out_channels, nb_Conv, activation='ReLU'):
super().__init__()
self.up = nn.Upsample(scale_factor=2)
self.coatt = CCA(F_g=in_channels//2, F_x=in_channels//2)
self.nConvs = _make_nConv(in_channels, out_channels, nb_Conv, activation)
def forward(self, x, skip_x):
up = self.up(x)
skip_x_att = self.coatt(g=up, x=skip_x)
x = torch.cat([skip_x_att, up], dim=1) # dim 1 is the channel dimension
return self.nConvs(x)
class UCTransNet(nn.Module):
def __init__(self, config,n_channels=3, n_classes=1,img_size=224,vis=False):
super().__init__()
self.vis = vis
self.n_channels = n_channels
self.n_classes = n_classes
in_channels = config.base_channel
self.inc = ConvBatchNorm(n_channels, in_channels)
self.down1 = DownBlock(in_channels, in_channels*2, nb_Conv=2)
self.down2 = DownBlock(in_channels*2, in_channels*4, nb_Conv=2)
self.down3 = DownBlock(in_channels*4, in_channels*8, nb_Conv=2)
self.down4 = DownBlock(in_channels*8, in_channels*8, nb_Conv=2)
self.mtc = ChannelTransformer(config, vis, img_size,
channel_num=[in_channels, in_channels*2, in_channels*4, in_channels*8],
patchSize=config.patch_sizes)
self.up4 = UpBlock_attention(in_channels*16, in_channels*4, nb_Conv=2)
self.up3 = UpBlock_attention(in_channels*8, in_channels*2, nb_Conv=2)
self.up2 = UpBlock_attention(in_channels*4, in_channels, nb_Conv=2)
self.up1 = UpBlock_attention(in_channels*2, in_channels, nb_Conv=2)
self.outc = nn.Conv2d(in_channels, n_classes, kernel_size=(1,1), stride=(1,1))
self.last_activation = nn.Sigmoid() # if using BCELoss
def forward(self, x):
x = x.float()
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x1,x2,x3,x4,att_weights = self.mtc(x1,x2,x3,x4)
x = self.up4(x5, x4)
x = self.up3(x, x3)
x = self.up2(x, x2)
x = self.up1(x, x1)
if self.n_classes ==1:
logits = self.last_activation(self.outc(x))
else:
logits = self.outc(x) # if nusing BCEWithLogitsLoss or class>1
if self.vis: # visualize the attention maps
return logits, att_weights
else:
return logits