-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
182 lines (149 loc) · 5.25 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
import torch.nn as nn
class LinearLayer(nn.Module):
def __init__(self, in_dim, out_dim, norm=False, activation='lrelu'):
super(LinearLayer, self).__init__()
self.affine = nn.Linear(in_dim, out_dim)
if norm:
self.norm = nn.BatchNorm1d(out_dim)
else:
self.norm = None
if activation=='relu':
self.activation = nn.ReLU(inplace=True)
elif activation=='lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation=='tanh':
self.activation = nn.Tanh()
elif activation=='sigmoid':
self.activation = nn.Sigmoid()
elif activation=='selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'none':
self.activation = None
else:
assert 0,'Unsupported activation {}'.format(activation)
def forward(self, x):
out = self.affine(x)
if self.norm:
out = self.norm(out)
if self.activation:
out = self.activation(out)
return out
class ConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel, stride, norm=False, activation='lrelu', pad=0, bias=True):
super(ConvLayer, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel, stride=stride, padding=pad, bias=bias)
if norm:
self.norm = nn.BatchNorm2d(out_channels)
else:
self.norm = None
if activation=='relu':
self.activation = nn.ReLU(inplace=True)
elif activation=='lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation=='tanh':
self.activation = nn.Tanh()
elif activation=='sigmoid':
self.activation = nn.Sigmoid()
elif activation=='selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'none':
self.activation = None
else:
assert 0,'Unsupported activation {}'.format(activation)
def forward(self, x):
out = self.conv(x)
if self.norm:
out = self.norm(out)
if self.activation:
out = self.activation(out)
return out
class ConvTransposeLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel, stride, norm=False, activation='lrelu', pad=0, outpad=0, bias=True):
super(ConvTransposeLayer, self).__init__()
self.convt = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=kernel, stride=stride, padding=pad, output_padding=outpad, bias=bias)
if norm:
self.norm = nn.BatchNorm2d(out_channels)
else:
self.norm = None
if activation=='relu':
self.activation = nn.ReLU(inplace=True)
elif activation=='lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation=='tanh':
self.activation = nn.Tanh()
elif activation=='sigmoid':
self.activation = nn.Sigmoid()
elif activation=='selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'none':
self.activation = None
else:
assert 0,'Unsupported activation {}'.format(activation)
def forward(self, x):
out = self.convt(x)
if self.norm:
out = self.norm(out)
if self.activation:
out = self.activation(out)
return out
class ResLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel, norm=False, activation='relu', pad_type='zero'):
super(ResLayer, self).__init__()
res = []
res.append(ConvLayer(in_channels ,out_channels, kernel, 1, 1, norm=norm, activation=activation, pad_type=pad_type))
res.append(ConvLayer(dim ,dim, 3, 1, 1, norm=norm, activation='none', pad_type=pad_type))
self.res = nn.Sequential(*res)
def forward(self, x):
inp = x
out = self.res(x)
out += inp
return out
class Reshape(nn.Module):
def __init__(self, shape):
super().__init__()
self.shape = shape
def forward(self, x):
return x.view(*self.shape)
class Chomp1d(nn.Module):
def __init__(self, chomp_size):
super(Chomp1d, self).__init__()
self.chomp_size = chomp_size
def forward(self, x):
return x[:, :, :-self.chomp_size].contiguous()
from torch.nn.utils import weight_norm
class ChannelNorm(nn.Module):
def __init__(self):
super(ChannelNorm, self).__init__()
def forward(self, x):
max_vals, _ = torch.max(torch.abs(x), 2, keepdim=True)
max_vals = max_vals + 1e-5
x = x / max_vals
return x
class TemporalBlock(nn.Module):
def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2):
super(TemporalBlock, self).__init__()
self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation))
self.chomp1 = Chomp1d(padding)
self.relu1 = nn.LeakyReLU(0.2, inplace=True)
self.dropout1 = nn.Dropout(dropout)
self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation))
self.chomp2 = Chomp1d(padding)
self.relu2 = nn.LeakyReLU(0.2, inplace=True)
self.dropout2 = nn.Dropout(dropout)
self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,
self.conv2, self.chomp2, self.relu2, self.dropout2)
self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
self.relu = nn.LeakyReLU(0.2, inplace=True)
self.init_weights()
def init_weights(self):
self.conv1.weight.data.normal_(0, 0.01)
self.conv2.weight.data.normal_(0, 0.01)
if self.downsample is not None:
self.downsample.weight.data.normal_(0, 0.01)
def forward(self, x):
out = self.net(x)
res = x if self.downsample is None else self.downsample(x)
return self.relu(out + res)