-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmain_benchmark.py
executable file
·57 lines (48 loc) · 2.19 KB
/
main_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python3
# Copyright (c) 2014-2022 Megvii Inc. All rights reserved.
"""Benchmark depth-wise large convolution for megengine and pytorch"""
import os
import time
import megengine
import megengine.functional as F
import torch
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
assert megengine.__version__ >= "1.8.2", "please update megengine via " \
"`pip3 megengine -f https://megengine.org.cn/whl/mge.html -U --user`"
def benchmark_megengine(batch_size, resolution, channels, depth, kernel_size, niters=10):
input = F.ones([batch_size, channels, resolution, resolution]) * 1e-3
weight = F.ones([channels, 1, 1, kernel_size, kernel_size]) * 1e-3
diff = []
for i in range(niters):
x = input
megengine._full_sync()
t = time.perf_counter()
for _ in range(depth):
x = F.conv2d(x, weight, bias=None, padding=kernel_size // 2, groups=channels)
megengine._full_sync()
diff.append((time.perf_counter() - t) * 1000)
diff = sum(sorted(diff)[1:-2]) / (niters - 3)
print(f"benchmark_megeg\tB{batch_size},R{resolution},C{channels},D{depth},K{kernel_size}\t{diff:.3f} ms")
return diff
@torch.no_grad()
def benchmark_torch(batch_size, resolution, channels, depth, kernel_size, niters=10):
input = torch.randn(batch_size, channels, resolution, resolution).cuda() * 1e-3
weight = torch.randn(channels, 1, kernel_size, kernel_size).cuda() * 1e-3
diff = []
for i in range(niters):
x = input.clone()
torch.cuda.synchronize()
t = time.perf_counter()
for _ in range(depth):
x = torch.nn.functional.conv2d(x, weight, bias=None, padding=kernel_size // 2, groups=channels)
torch.cuda.synchronize()
diff.append((time.perf_counter() - t) * 1000)
diff = sum(sorted(diff)[1:-2]) / (niters - 3)
print(f"benchmark_torch\tB{batch_size},R{resolution},C{channels},D{depth},K{kernel_size}\t{diff:.3f} ms")
return diff
if __name__ == "__main__":
for resolution in (16, 32):
for kernel_size in (7, 17, 27):
benchmark_torch(64, resolution, 256, 12, kernel_size)
benchmark_megengine(64, resolution, 256, 12, kernel_size)