-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathaccuracy.py
55 lines (49 loc) · 1.66 KB
/
accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# -*- coding: utf-8 -*-
"""
@author: ZHANG Min, Wuhan University
@email: [email protected]
"""
from __future__ import print_function
from __future__ import division
import numpy as np
from datetime import datetime
def hist(gt_data, pred_data):
gt_data = np.asarray(gt_data)
pred_data = np.asarray(pred_data)
gt_data[gt_data > 0.5] = 1
gt_data[gt_data < 1] = 0
pred_data[pred_data > 0.5] = 1
pred_data[pred_data < 1] = 0
hist = np.zeros((2, 2))
tp = np.count_nonzero((gt_data == pred_data) & (gt_data > 0))
tn = np.count_nonzero((gt_data == pred_data) & (gt_data == 0))
fp = np.count_nonzero(gt_data < pred_data)
fn = np.count_nonzero(gt_data > pred_data)
hist[0, 0] = tp
hist[1, 1] = tn
hist[0, 1] = fp
hist[1, 0] = fn
return hist
def evaluation_print(hist):
"""
GT:Changed, Unchanged
Predicted-Changed: TP , FP , b1
Predicted-Unchanged: FN , TN , b2
a1 , a2
"""
tp = hist[0, 0]
fp = hist[0, 1] # gt->0,predict->1, false alarms
fn = hist[1, 0] # gt->1,predict->0, missed detections
if tp == 0:
recall = 0
precision = 0
f1measure = 0
else:
recall = tp * 1.0 / (tp + fn)
precision = tp * 1.0 / (tp + fp)
f1measure = 2 * recall * precision / (recall + precision)
print('>>>', datetime.now(), "---------Accuracy-------")
print('>>>', datetime.now(), (" recall:", recall))
print('>>>', datetime.now(), (" precision:", precision))
print('>>>', datetime.now(), (" f1-measure:", f1measure))
print('>>>', datetime.now(), "----------------------")