-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathPatchMatch.py
128 lines (120 loc) · 4.48 KB
/
PatchMatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
from PIL import Image
import time
def cal_distance(a, b, A_padding, B, p_size):
p = p_size // 2
patch_a = A_padding[a[0]:a[0]+p_size, a[1]:a[1]+p_size, :]
patch_b = B[b[0]-p:b[0]+p+1, b[1]-p:b[1]+p+1, :]
temp = patch_b - patch_a
num = np.sum(1 - np.int32(np.isnan(temp)))
dist = np.sum(np.square(np.nan_to_num(temp))) / num
return dist
def reconstruction(f, A, B):
A_h = np.size(A, 0)
A_w = np.size(A, 1)
temp = np.zeros_like(A)
for i in range(A_h):
for j in range(A_w):
temp[i, j, :] = B[f[i, j][0], f[i, j][1], :]
Image.fromarray(temp).show()
def initialization(A, B, p_size):
A_h = np.size(A, 0)
A_w = np.size(A, 1)
B_h = np.size(B, 0)
B_w = np.size(B, 1)
p = p_size // 2
random_B_r = np.random.randint(p, B_h-p, [A_h, A_w])
random_B_c = np.random.randint(p, B_w-p, [A_h, A_w])
A_padding = np.ones([A_h+p*2, A_w+p*2, 3]) * np.nan
A_padding[p:A_h+p, p:A_w+p, :] = A
f = np.zeros([A_h, A_w], dtype=object)
dist = np.zeros([A_h, A_w])
for i in range(A_h):
for j in range(A_w):
a = np.array([i, j])
b = np.array([random_B_r[i, j], random_B_c[i, j]], dtype=np.int32)
f[i, j] = b
dist[i, j] = cal_distance(a, b, A_padding, B, p_size)
return f, dist, A_padding
def propagation(f, a, dist, A_padding, B, p_size, is_odd):
A_h = np.size(A_padding, 0) - p_size + 1
A_w = np.size(A_padding, 1) - p_size + 1
x = a[0]
y = a[1]
if is_odd:
d_left = dist[max(x-1, 0), y]
d_up = dist[x, max(y-1, 0)]
d_current = dist[x, y]
idx = np.argmin(np.array([d_current, d_left, d_up]))
if idx == 1:
f[x, y] = f[max(x - 1, 0), y]
dist[x, y] = cal_distance(a, f[x, y], A_padding, B, p_size)
if idx == 2:
f[x, y] = f[x, max(y - 1, 0)]
dist[x, y] = cal_distance(a, f[x, y], A_padding, B, p_size)
else:
d_right = dist[min(x + 1, A_h-1), y]
d_down = dist[x, min(y + 1, A_w-1)]
d_current = dist[x, y]
idx = np.argmin(np.array([d_current, d_right, d_down]))
if idx == 1:
f[x, y] = f[min(x + 1, A_h-1), y]
dist[x, y] = cal_distance(a, f[x, y], A_padding, B, p_size)
if idx == 2:
f[x, y] = f[x, min(y + 1, A_w-1)]
dist[x, y] = cal_distance(a, f[x, y], A_padding, B, p_size)
def random_search(f, a, dist, A_padding, B, p_size, alpha=0.5):
x = a[0]
y = a[1]
B_h = np.size(B, 0)
B_w = np.size(B, 1)
p = p_size // 2
i = 4
search_h = B_h * alpha ** i
search_w = B_w * alpha ** i
b_x = f[x, y][0]
b_y = f[x, y][1]
while search_h > 1 and search_w > 1:
search_min_r = max(b_x - search_h, p)
search_max_r = min(b_x + search_h, B_h-p)
random_b_x = np.random.randint(search_min_r, search_max_r)
search_min_c = max(b_y - search_w, p)
search_max_c = min(b_y + search_w, B_w - p)
random_b_y = np.random.randint(search_min_c, search_max_c)
search_h = B_h * alpha ** i
search_w = B_w * alpha ** i
b = np.array([random_b_x, random_b_y])
d = cal_distance(a, b, A_padding, B, p_size)
if d < dist[x, y]:
dist[x, y] = d
f[x, y] = b
i += 1
def NNS(img, ref, p_size, itr):
A_h = np.size(img, 0)
A_w = np.size(img, 1)
f, dist, img_padding = initialization(img, ref, p_size)
for itr in range(1, itr+1):
if itr % 2 == 0:
for i in range(A_h - 1, -1, -1):
for j in range(A_w - 1, -1, -1):
a = np.array([i, j])
propagation(f, a, dist, img_padding, ref, p_size, False)
random_search(f, a, dist, img_padding, ref, p_size)
else:
for i in range(A_h):
for j in range(A_w):
a = np.array([i, j])
propagation(f, a, dist, img_padding, ref, p_size, True)
random_search(f, a, dist, img_padding, ref, p_size)
print("iteration: %d"%(itr))
return f
if __name__ == "__main__":
img = np.array(Image.open("./cup_a.jpg"))
ref = np.array(Image.open("./cup_b.jpg"))
p_size = 3
itr = 5
start = time.time()
f = NNS(img, ref, p_size, itr)
end = time.time()
print(end - start)
reconstruction(f, img, ref)