-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathna3rp.mod
144 lines (116 loc) · 2.78 KB
/
na3rp.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
TITLE na3rp sodium current
COMMENT
Comments from Original Implementation:
Na current
modified from Jeff Magee. M.Migliore may97
added sh to account for higher threshold M.Migliore, Apr.2002
modified by RP to have slow inactivation given in Fleiderivsh et al.
Model Reference:
Powers, R.K. and Heckman, C.J., 2017.
"Synaptic control of the shape of the motoneuron
pool input-output function."
Journal of neurophysiology, 117(3), pp.1171-1184.
Original Code Link:
https://senselab.med.yale.edu/ModelDB/showmodel?model=239582
ENDCOMMENT
NEURON {
SUFFIX na3rp
USEION na READ ena WRITE ina
RANGE gbar, ar, sh,ina
RANGE minf, hinf, mtau, htau, sinf, taus
RANGE qinf
RANGE thinf
}
PARAMETER {
sh = 8 (mV)
gbar = 0.010 (mho/cm2)
tha = -30 (mV) : v 1/2 for act
qa = 7.2 (mV) : act slope (4.5)
Ra = 0.4 (/ms) : open (v)
Rb = 0.124 (/ms) : close (v)
thi1 = -45 (mV) : v 1/2 for inact
thi2 = -45 (mV) : v 1/2 for inact
qd = 1.5 (mV) : inact tau slope
qg = 1.5 (mV)
mmin=0.02
hmin=0.5
q10=2
Rg = 0.01 (/ms) : inact recov (v)
Rd = .03 (/ms) : inact (v)
qq = 10 (mV)
tq = -55 (mV)
thinf = -50 (mV) : inact inf slope
qinf = 4 (mV) : inact inf slope
a0s=0.001 (/ms)
b0s=0.0034 (/ms)
asvh=-85 (mV)
bsvh=-17 (mV)
avs=30 (mV)
bvs=10 (mV)
ar=1 (1) : 1=no inact., 0=max inact.
ena (mV) : must be explicitly def. in hoc
celsius
v (mV)
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
}
ASSIGNED {
ina (mA/cm2)
thegna (mho/cm2)
minf hinf
mtau (ms) htau (ms)
sinf (ms) taus (ms)
}
STATE { m h s}
BREAKPOINT {
SOLVE states METHOD cnexp
thegna = gbar*m*m*m*h*s
ina = thegna * (v - ena)
}
INITIAL {
trates(v,ar,sh)
m=minf
h=hinf
s=sinf
}
FUNCTION alps(v(mV)) {
alps = a0s*exp((asvh-v)/avs)
}
FUNCTION bets(v(mV)) {
bets = b0s/(exp((bsvh-v)/bvs)+1)
}
LOCAL mexp, hexp, sexp
DERIVATIVE states {
trates(v,ar,sh)
m' = (minf-m)/mtau
h' = (hinf-h)/htau
s' = (sinf - s)/taus
}
PROCEDURE trates(vm,a2,sh2) {
LOCAL a, b, c, qt
qt=q10^((celsius-24)/10)
a = trap0(vm,tha+sh2,Ra,qa)
b = trap0(-vm,-tha-sh2,Rb,qa)
mtau = 1/(a+b)/qt
if (mtau<mmin) {mtau=mmin}
minf = a/(a+b)
a = trap0(vm,thi1+sh2,Rd,qd)
b = trap0(-vm,-thi2-sh2,Rg,qg)
htau = 1/(a+b)/qt
if (htau<hmin) {htau=hmin}
hinf = 1/(1+exp((vm-thinf-sh2)/qinf))
taus = 1/(alps(vm)+bets(vm))
c=alps(vm)*taus
sinf = c+a2*(1-c)
}
FUNCTION trap0(v,th,a,q) {
if (fabs(v-th) > 1e-6) {
trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
} else {
trap0 = a * q
}
}