-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdesign.py
185 lines (150 loc) · 6.11 KB
/
design.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import argparse
import os
import csv
import torch
import torch.nn as nn
import shutil
import numpy as np
import random
import torch.backends.cudnn as cudnn
from torch import nn
from tqdm import tqdm
import tensorboardX
from model import VCSD as Generator
from loss import PerceptualLoss
from util import sample_data, get_config, prepare_sub_folder, \
get_data_loaders, viz_nolight, make_dataset
def train(
opts, config, wavelength,
g, opt_g,
train_loader,
device, checkpoint_directory, image_directory
):
train_loader = sample_data(train_loader)
pbar = range(config['max_iter'])
pbar = tqdm(pbar, initial=config['iterations'], dynamic_ncols=True, smoothing=0.01)
percep = PerceptualLoss().to(device)
for idx in pbar:
i = idx + config['iterations']
if i > config['max_iter']:
print("Done!")
break
g.train()
spectral, gt, noise = next(train_loader)
spectral, gt, noise = spectral.to(device), gt.to(device), noise.to(device)
opt_g.zero_grad()
output, vis, nir, noisy_vis, noisy_nir, wavelength, \
ref_LED, led_intersect, xi, ksi_vis, ksi_nir, scotopic, SP_ratio, \
origin_led_spectral, led_spectral, ksi_coefficient = g(
spectral, noise
)
loss_G_percep = percep(output, gt) * opts.perceplamb
loss_G = loss_G_percep
loss_G.backward()
opt_g.step()
if i % 20000 == 1 and i > 10:
for param_group in opt_g.param_groups:
temp_lr = param_group['lr']
param_group['lr'] = temp_lr * 0.1
description = f"percep_loss: {loss_G_percep:.4f}"
pbar.set_description((description))
train_writer.add_scalar('percep_loss', loss_G_percep.item(), i)
if i % config['image_save_iter'] == 0:
viz_nolight(
output, gt, vis, noisy_vis, nir, noisy_nir,
wavelength, ref_LED, scotopic, origin_led_spectral, led_spectral,
os.path.join(image_directory, str(i).zfill(7) + '_train_pic.png')
)
if i % config['snapshot_save_iter'] == 0:
print("curve:", led_spectral)
print("ksi_coefficient:", ksi_coefficient)
print('ksi_vis:', ksi_vis)
print('ksi_nir:', ksi_nir)
save_dict = {
"g": g.state_dict(),
"opt_g": opt_g.state_dict(),
"select": g.op.select,
"curve": led_spectral,
"ksi_coefficient": ksi_coefficient,
"iterations": i
}
torch.save(
save_dict,
os.path.join(checkpoint_directory, f"{str(i).zfill(7)}.pt"),
)
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True, help='Path to the config file.')
parser.add_argument('--output_path', type=str, required=True, help="outputs path")
parser.add_argument("--resume", default=None)
parser.add_argument('--perceplamb', type=float, default=1, help='')
opts = parser.parse_args()
cudnn.benchmark = True
setup_seed(521)
# Setup logger and output folders
model_name = os.path.splitext(os.path.basename(opts.config))[0]
checkpoint_directory, image_directory = prepare_sub_folder(opts.output_path)
shutil.copy(opts.config, os.path.join(opts.output_path, 'config.yaml'))
os.makedirs(os.path.join(opts.output_path, 'scripts'), exist_ok=True)
# Load experiment setting
config = get_config(opts.config)
device = "cuda"
train_writer = tensorboardX.SummaryWriter(os.path.join(opts.output_path, "logs", model_name))
scripts_to_save = make_dataset('./', '.py')
for script in scripts_to_save:
dst_file = os.path.join(opts.output_path, 'scripts', os.path.basename(script))
if os.path.exists(dst_file):
os.remove(dst_file)
shutil.copyfile(script, dst_file)
camera = np.load('./spectrum_data/GS3-U3-15S5C_420_890.npy')[::-1, :].copy()
ans = []
with open("./spectrum_data/EyeSensitivity.csv", mode="r", encoding="utf-8-sig") as f:
reader = csv.reader(f)
for line in reader: #Iterate through the loop to read line by line
for i in range(len(line)):
line[i] = float(line[i])
ans.append(line)
ans = np.array(ans)[2:, :] # [42, 5]
extra_wavelength = np.linspace(770, 890, 13)[:, np.newaxis]
extra_ans = np.concatenate([extra_wavelength, np.zeros((13, 4))], axis=1)
ans = np.concatenate([ans, extra_ans], axis=0) # 420nm~890nm
wavelength = ans[:, 0]
scotopic = ans[:, 4]
photopic = ans[:, 3]
bases = np.load('./spectrum_data/led_31allcut_420_1000.npy')[:-5, :-11]
ref_LED = bases[13]
print('shape of CSS: ', camera.shape)
print('shape of EyeSensitivity: ', ans.shape)
print('shape of LED bases:', bases.shape)
g = Generator(
wavelength, camera, scotopic, photopic,
ref_LED, bases, config['gain']
).to(device)
total_params = sum(p.numel() for p in g.parameters())
print(f'{total_params / 1000000:.4f}M total parameters in g.')
params_g = list(g.parameters())
opt_g = torch.optim.Adam(
[p for p in params_g if p.requires_grad],
lr=config['lr'], betas=(config['beta1'], config['beta2']),
)
config['iterations'] = 0
if opts.resume is not None:
ckpt = opts.resume
state_dict = torch.load(ckpt)
config['iterations'] = int(state_dict['iterations'])
g.load_state_dict(state_dict['g'])
opt_g.load_state_dict(state_dict['opt_g'])
print('Resume from iteration %d' % config['iterations'])
train_loader, _ = get_data_loaders(config)
train(
opts, config, wavelength,
g, opt_g,
train_loader,
device, checkpoint_directory, image_directory
)