-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshowResults.m
90 lines (74 loc) · 3.03 KB
/
showResults.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
function showResults(NetworkActivity,unqActive, Conv_n, Conv_p)
% prints some results (mainly network activity)
%plot pattern convergence outcomes to evaluate hallucinatory behaviour
global N
global n
global trials
display(' ' );
display(['Network Size: ' num2str(N)]);
display(['Stored Patterns: ' num2str(n)]);
display(' ' );
display([ num2str((100/N)*mean(NetworkActivity(1,:))) '% +- ' num2str((100/N)*mean(NetworkActivity(3,:))) '% active neurons at any given time in normal network']);
display([ num2str((100/N)*mean(NetworkActivity(2,:))) '% +- ' num2str((100/N)*mean(NetworkActivity(4,:))) '% active neurons at any given time in pathological network']);
display(' ' );
% display([ num2str(mean(NetworkActivity(5,:))) ' +- ' num2str(mean(NetworkActivity(6,:))) ' pathological:normal neuron activation ratio']);
% display(' ' );
display([ num2str(mean(unqActive(1,:))) '% +- ' num2str(std(unqActive(1,:))) '% of neurons involved in normal network']);
display([ num2str(mean(unqActive(2,:))) '% +- ' num2str(std(unqActive(2,:))) '% of neurons involved in pathological network']);
%% plot some results
NAmean(1,:) = (100/N)*mean(NetworkActivity(1,:)); NAmean(2,:) = (100/N)*mean(NetworkActivity(2,:));
NAstd(1,:) = (100/N)*mean(NetworkActivity(3,:)); NAstd(2,:) = (100/N)*mean(NetworkActivity(4,:));
uAmean(1,:) = mean(unqActive(1,:)); uAmean(2,:) = mean(unqActive(2,:));
uAstd(1,:) = std(unqActive(1,:)); uAstd(2,:) = std(unqActive(2,:));
figure;
subplot(121);
bar(NAmean); hold on;
errorbar(NAmean, NAstd, '.'); ylim ([0 110]);
set(gca,'XTickLabel',{'Normal', 'Pathological'});
ylabel('Active neurons at any given time in network (%)');
title ('Mean Neuronal Involvement');
subplot(122);
bar(uAmean); hold on;
errorbar(uAmean, uAstd, '.'); ylim ([0 110]);
set(gca,'XTickLabel',{'Normal', 'Pathological'});
ylabel('Neuron involved in network (%)');
title ('Total Neuronal Involvement');
Conv(1,:) = 100*sum(Conv_n')/trials;
Conv(2,:) = 100*sum(Conv_p')/trials;
hallp = zeros(4,1);
halln = zeros(4,1);
for i = 1:trials
if sum(Conv_p(:, i)) == 0
hallp(1) = hallp(1) + 1;
elseif sum(Conv_p(:, i)) == 1
hallp(2) = hallp(2) + 1;
elseif sum(Conv_p(:, i)) == 2
hallp(3) = hallp(3) + 1;
elseif sum(Conv_p(:,i)) > 2
hallp(4) = hallp(3) + 1;
end
end
for i = 1:trials
if sum(Conv_n(:, i)) == 0
halln(1) = halln(1) + 1;
elseif sum(Conv_n(:, i)) == 1
halln(2) = halln(2) + 1;
elseif sum(Conv_n(:, i)) ==2
halln(3) = halln(3) + 1;
elseif sum(Conv_n(:,i)) > 2
halln(4) = halln(3) + 1;
end
end
hallp = 100*hallp/trials
halln = 100*halln/trials
figure;
for i = 1:4
hall(i,:) = [halln(i) hallp(i)];
end
% hall(1,:) = halln;
% hall(2,:) = hallp;
bar(hall);
set(gca,'XTickLabel',{'no convergence', '1 pattern', '2 patterns', '>2 patterns'});
legend('Normal', 'Pathological');
title(['Pattern Convergence of Network, ' num2str(trials) ' trials']);
ylabel('Proportion of Instances (%)');