-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolours.py
45 lines (38 loc) · 1.64 KB
/
colours.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def hex_to_RGB(hex):
''' "#FFFFFF" -> [255,255,255] '''
# Pass 16 to the integer function for change of base
return [int(hex[i:i+2], 16) for i in range(1, 6, 2)]
def RGB_to_hex(RGB):
''' [255,255,255] -> "#FFFFFF" '''
# Components need to be integers for hex to make sense
RGB = [int(x) for x in RGB]
return "#"+"".join(["0{0:x}".format(v) if v < 16 else
"{0:x}".format(v) for v in RGB])
def color_dict(gradient):
''' Takes in a list of RGB sub-lists and returns dictionary of
colors in RGB and hex form for use in a graphing function
defined later on '''
return {"hex": [RGB_to_hex(RGB) for RGB in gradient],
"r": [RGB[0] for RGB in gradient],
"g": [RGB[1] for RGB in gradient],
"b": [RGB[2] for RGB in gradient]}
def linear_gradient(start_hex, finish_hex="#FFFFFF", n=10):
''' returns a gradient list of (n) colors between
two hex colors. start_hex and finish_hex
should be the full six-digit color string,
inlcuding the number sign ("#FFFFFF") '''
# Starting and ending colors in RGB form
s = hex_to_RGB(start_hex)
f = hex_to_RGB(finish_hex)
# Initilize a list of the output colors with the starting color
RGB_list = [s]
# Calcuate a color at each evenly spaced value of t from 1 to n
for t in range(1, n):
# Interpolate RGB vector for color at the current value of t
curr_vector = [
int(s[j] + (float(t)/(n-1))*(f[j]-s[j]))
for j in range(3)
]
# Add it to our list of output colors
RGB_list.append(curr_vector)
return color_dict(RGB_list)