-
Notifications
You must be signed in to change notification settings - Fork 6
/
pool.rs
1343 lines (1208 loc) · 43.7 KB
/
pool.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use std::marker::PhantomData;
use std::panic::RefUnwindSafe;
use crate::cell::{RootCell, RootObj};
use crate::result::Result;
use crate::stm::*;
use crate::utils::*;
use crate::*;
use std::collections::HashMap;
use std::fs::OpenOptions;
use std::ops::Range;
use std::panic::UnwindSafe;
use std::path::Path;
use std::thread::ThreadId;
use std::{mem, ptr};
/// Default pool memory size to be used while creating a new pool
pub const DEFAULT_POOL_SIZE: u64 = 8 * 1024 * 1024;
/// Open pool flags
pub mod open_flags {
/// Open Flag: Create the pool memory file
pub const O_C: u32 = 0x00000001;
/// Open Flag: Formats the pool memory file if file exists, otherwise error
pub const O_F: u32 = 0x00000002;
/// Open Flag: Creates pool memory file only if it does not exist
pub const O_CNE: u32 = 0x00000004;
/// Open Flag: Creates and formats a new file
pub const O_CF: u32 = O_C | O_F;
/// Open Flag: Creates and formats pool memory file only if it does not exist
pub const O_CFNE: u32 = O_CNE | O_F;
/// Open Flag: Creates a pool memory file of size 1GB
pub const O_1GB: u32 = 0x00000010;
/// Open Flag: Creates a pool memory file of size 2GB
pub const O_2GB: u32 = 0x00000020;
/// Open Flag: Creates a pool memory file of size 4GB
pub const O_4GB: u32 = 0x00000040;
/// Open Flag: Creates a pool memory file of size 8GB
pub const O_8GB: u32 = 0x00000080;
/// Open Flag: Creates a pool memory file of size 16GB
pub const O_16GB: u32 = 0x00000100;
/// Open Flag: Creates a pool memory file of size 32GB
pub const O_32GB: u32 = 0x00000200;
/// Open Flag: Creates a pool memory file of size 64GB
pub const O_64GB: u32 = 0x00000400;
/// Open Flag: Creates a pool memory file of size 128GB
pub const O_128GB: u32 = 0x00000800;
/// Open Flag: Creates a pool memory file of size 256GB
pub const O_256GB: u32 = 0x00001000;
/// Open Flag: Creates a pool memory file of size 512GB
pub const O_512GB: u32 = 0x00002000;
/// Open Flag: Creates a pool memory file of size 1TB
pub const O_1TB: u32 = 0x00004000;
/// Open Flag: Creates a pool memory file of size 2TB
pub const O_2TB: u32 = 0x00008000;
/// Open Flag: Creates a pool memory file of size 4TB
pub const O_4TB: u32 = 0x00010000;
/// Open Flag: Creates a pool memory file of size 8TB
pub const O_8TB: u32 = 0x00020000;
/// Open Flag: Creates a pool memory file of size 16TB
pub const O_16TB: u32 = 0x00040000;
/// Open Flag: Creates a pool memory file of size 32TB
pub const O_32TB: u32 = 0x00080000;
/// Open Flag: Creates a pool memory file of size 64TB
pub const O_64TB: u32 = 0x00100000;
/// Open Flag: Open only to read info
pub const O_READINFO: u32 = u32::MAX;
}
use open_flags::*;
/// Shows that the pool has a root object
pub const FLAG_HAS_ROOT: u64 = 0x0000_0001;
/// This macro can be used to access static data of an arbitrary allocator
#[macro_export]
macro_rules! static_inner {
($id:ident, $inner:ident, $body:block) => {
unsafe {
if let Some($inner) = $id {
let $inner = &mut *$inner;
$body
} else {
panic!("No memory pool is open or the root object is moved to a transaction. Try cloning the root object instead of moving it to a transaction.");
}
}
};
}
/// Persistent Memory Pool
///
/// This trait can be used to define a persistent memory pool type. The
/// methods of `MemPool` trait do not have a reference to self in order to make
/// sure that all information that it works with, including the virtual address
/// boundaries, are static. Therefore, all objects with the same memory
/// allocator will share a unique memory pool type. Having a strong set of type
/// checking rules, Rust prevents referencing from one memory pool to another.
///
/// To implement a new memory pool, you should define a new type with static
/// values, that implements `MemPool`. You may redefine the default allocator as
/// a new pool using [`pool!()`] which creates a pool module and generates the
/// necessary code segments of type [`Allocator`].
///
/// # Examples
/// The following example shows how to use `MemPool` to track allocations of a
/// single numerical object of type `i32`.
///
/// ```
/// # use corundum::alloc::MemPool;
/// # use corundum::stm::Journal;
/// # use corundum::result::Result;
/// # use std::ops::Range;
/// use std::alloc::{alloc,dealloc,realloc,Layout};
///
/// struct TrackAlloc {}
///
/// unsafe impl MemPool for TrackAlloc {
/// fn rng() -> Range<u64> { 0..u64::MAX }
/// unsafe fn pre_alloc(size: usize) -> (*mut u8, u64, usize, usize) {
/// let p = alloc(Layout::from_size_align_unchecked(size, 4));
/// println!("A block of {} bytes is allocated at {}", size, p as u64);
/// (p, p as u64, size, 0)
/// }
/// unsafe fn pre_dealloc(p: *mut u8, size: usize) -> usize {
/// println!("A block of {} bytes at {} is deallocated", size, p as u64);
/// dealloc(p, Layout::from_size_align_unchecked(size, 1));
/// 0
/// }
/// }
///
/// unsafe {
/// let (p, _, _) = TrackAlloc::alloc(1);
/// *p = 10;
/// println!("loc {} contains {}", p as u64, *p);
/// TrackAlloc::dealloc(p, 1);
/// }
/// ```
///
/// The following example shows how to use [`pool!()`] to define a multiple
/// pools.
///
/// ```
/// # use corundum::alloc::*;
/// # use corundum::*;
/// // Declare p1 module
/// pool!(p1);
///
/// // Declare p2 module
/// pool!(p2);
///
/// let _pool1 = p1::Allocator::open_no_root("p1.pool", O_CF).unwrap();
/// let _pool2 = p2::Allocator::open_no_root("p2.pool", O_CF).unwrap();
///
/// transaction(|j| {
/// // Create a Pbox object in p1
/// let b = p1::Pbox::new(10, j);
/// }).unwrap();
///
/// transaction(|j| {
/// // Create a Prc object in p2
/// let p = p2::Prc::new(10, j);
/// }).unwrap();
/// ```
///
/// # Safety
///
/// This is the developer's responsibility to manually drop allocated objects.
/// One way for memory management is to use pointer wrappers that implement
/// [`Drop`] trait and deallocate the object on drop. Unsafe
/// methods does not guarantee persistent memory safety.
///
/// `pmem` crate provides `Pbox`, `Prc`, and `Parc` for memory management using
/// RAII. They internally use the unsafe methods.
///
/// [`pool!()`]: ./default/macro.pool.html
/// [`Allocator`]: ../default/struct.Allocator.html
pub unsafe trait MemPoolTraits
where
Self: 'static + Sized,
{
/// Returns the name of the pool type
fn name() -> &'static str {
std::any::type_name::<Self>()
}
/// Opens a new pool without any root object. This function is for testing
/// and is not useful in real applications as none of the allocated
/// objects in persistent region is durable. The reason is that they are not
/// reachable from a root object as it doesn't exists. All objects can live
/// only in the scope of a transaction.
///
/// # Flags
/// * O_C: create a memory pool file if not exists
/// * O_F: format the memory pool file
/// * O_CNE: create a memory pool file if not exists
/// * O_CF: create and format a new memory pool file
/// * O_CFNE: create and format a memory pool file only if not exists
///
/// See [`open_flags`](./open_flags/index.html) for more options.
fn open_no_root(_path: &str, _flags: u32) -> Result<PoolGuard<Self>> {
unimplemented!()
}
/// Commits all changes and clears the logs for all threads
///
/// This method should be called while dropping the `MemPool` object to
/// make sure that all uncommitted changes outside transactions, such as
/// reference counters, are persistent.
unsafe fn close() -> Result<()> {
unimplemented!()
}
/// Returns the zone index corresponding to a given address
#[inline]
fn zone(_off: u64) -> usize {
0
}
/// Opens a pool and retrieves the root object
///
/// The root type should implement [`RootObj`] trait in order to create a
/// root object on its absence. This function [creates and] returns an
/// immutable reference to the root object. The pool remains open as long as
/// the root object is in the scope. Like other persistent objects, the root
/// object is immutable and it is modifiable via interior mutability.
///
/// # Flags
/// * O_C: create a memory pool file if not exists
/// * O_F: format the memory pool file
/// * O_CNE: create a memory pool file if not exists
/// * O_CF: create and format a new memory pool file
/// * O_CFNE: create and format a memory pool file only if not exists
///
/// See [`open_flags`](./open_flags/index.html) for more options.
///
/// # Examples
///
/// ```
/// use corundum::default::*;
///
/// let root = Allocator::open::<i32>("foo.pool", O_CF).unwrap();
///
/// assert_eq!(*root, i32::default());
/// ```
///
/// ## Single-thread Shared Root Object
///
/// [`Prc`]`<`[`PCell`]`<T>>` can be used in order to have a mutable shared
/// root object, as follows.
///
/// ```
/// use corundum::default::*;
///
/// type Root = Prc<PCell<i32>>;
///
/// let root = Allocator::open::<Root>("foo.pool", O_CF).unwrap();
///
/// let data = root.get();
///
/// if data == i32::default() {
/// println!("Initializing data");
/// // This block runs only once to initialize the root object
/// transaction(|j| {
/// root.set(10, j);
/// }).unwrap();
/// }
///
/// assert_eq!(root.get(), 10);
/// ```
///
/// ## Thread-safe Root Object
///
/// If you need a thread-safe root object, you may want to wrap the root object
/// in [`Parc`]`<`[`PMutex`]`<T>>`, as shown in the example below:
///
/// ```
/// use corundum::default::*;
/// use std::thread;
///
/// type Root = Parc<PMutex<i32>>;
///
/// let root = Allocator::open::<Root>("foo.pool", O_CF).unwrap();
///
/// let mut threads = vec!();
///
/// for _ in 0..10 {
/// let root = Parc::demote(&root);
/// threads.push(thread::spawn(move || {
/// transaction(|j| {
/// if let Some(root) = root.promote(j) {
/// let mut root = root.lock(j);
/// *root += 10;
/// }
/// }).unwrap();
/// }));
/// }
///
/// for thread in threads {
/// thread.join().unwrap();
/// }
///
/// transaction(|j| {
/// let data = root.lock(j);
/// assert_eq!(*data % 100, 0);
/// }).unwrap();
/// ```
///
/// # Errors
///
/// * A volatile memory pool (e.g. `Heap`) doesn't have a root object.
/// * The pool should be open before accessing the root object.
///
/// [`RootObj`]: ../stm/trait.RootObj.html
/// [`Prc`]: ../prc/struct.Prc.html
/// [`Parc`]: ../sync/parc/struct.Parc.html
/// [`PCell`]: ./default/type.PCell.html
/// [`PRefCell`]: ./default/type.PRefCell.html
/// [`PMutex`]: ./default/type.PMutex.html
fn open<'a, U: 'a + PSafe + RootObj<Self>> (
_path: &str,
_flags: u32,
) -> Result<RootCell<'a, U, Self>> where Self: MemPool {
unimplemented!()
}
/// Returns true if the pool is open
fn is_open() -> bool {
unimplemented!()
}
/// Formats the memory pool file
unsafe fn format(_path: &str) -> Result<()> {
unimplemented!()
}
/// Applies open pool flags
unsafe fn apply_flags(path: &str, flags: u32) -> Result<()> {
let mut size: u64 = flags as u64 >> 4;
if size.count_ones() > 1 {
return Err("Cannot have multiple size flags".to_string());
} else if size == 0 {
size = DEFAULT_POOL_SIZE;
} else {
if flags & (O_C | O_CNE) == 0 {
return Err("Cannot use size flag without a create flag".to_string());
}
size <<= 30;
}
let mut format = !Path::new(path).exists() && ((flags & O_F) != 0);
if ((flags & O_C) != 0) || ((flags & O_CNE != 0) && !Path::new(path).exists()) {
let _=std::fs::remove_file(path);
create_file(path, size)?;
format = (flags & O_F) != 0;
}
if format {
Self::format(path)?;
}
Ok(())
}
/// Indicates if the given offset is allocated
#[inline]
fn allocated(_off: u64, _len: usize) -> bool {
true
}
/// Indicates if there the pool is in a good shape
#[inline]
fn verify() -> bool {
true
}
/// Translates raw pointers to memory offsets
///
/// # Safety
///
/// The raw pointer should be in the valid range
#[inline]
unsafe fn off_unchecked<T: ?Sized>(x: *const T) -> u64 {
(x as *const u8 as u64) - Self::start()
}
/// Acquires a reference pointer to the object
///
/// # Safety
///
/// The offset should be in the valid address range
#[inline]
unsafe fn get_unchecked<'a, T: 'a + ?Sized>(off: u64) -> &'a T {
#[cfg(feature = "stat_perf")]
let _perf = crate::stat::Measure::<Self>::Deref(std::time::Instant::now());
#[cfg(any(feature = "check_access_violation", debug_assertions))]
assert!( Self::allocated(off, 1), "Access Violation (0x{:x})", off );
utils::read_addr(Self::start() + off)
}
/// Acquires a mutable reference to the object
///
/// # Safety
///
/// The offset should be in the valid address range
#[inline]
#[track_caller]
unsafe fn get_mut_unchecked<'a, T: 'a + ?Sized>(off: u64) -> &'a mut T {
#[cfg(feature = "stat_perf")]
let _perf = crate::stat::Measure::<Self>::Deref(std::time::Instant::now());
#[cfg(any(feature = "check_access_violation", debug_assertions))]
assert!( Self::allocated(off, 1), "Access Violation (0x{:x})", off );
utils::read_addr(Self::start() + off)
}
/// Acquires a reference to the slice
///
/// # Safety
///
/// The offset should be in the valid address range
#[inline]
unsafe fn deref_slice_unchecked<'a, T: 'a>(off: u64, len: usize) -> &'a [T] {
#[cfg(feature = "stat_perf")]
let _perf = crate::stat::Measure::<Self>::Deref(std::time::Instant::now());
if off == u64::MAX {
&[]
} else {
let ptr = utils::read_addr(Self::start() + off);
let res = std::slice::from_raw_parts(ptr, len);
#[cfg(any(feature = "check_access_violation", debug_assertions))]
assert!(
Self::allocated(off, mem::size_of::<T>().max(1) * len),
"Access Violation (0x{:x}..0x{:x})",
off,
off.checked_add((mem::size_of::<T>().max(1) * len) as u64 - 1).unwrap_or_default()
);
res
}
}
/// Acquires a mutable reference to the slice
///
/// # Safety
///
/// The offset should be in the valid address range
#[inline]
unsafe fn deref_slice_unchecked_mut<'a, T: 'a>(off: u64, len: usize) -> &'a mut [T] {
#[cfg(feature = "stat_perf")]
let _perf = crate::stat::Measure::<Self>::Deref(std::time::Instant::now());
if off == u64::MAX {
&mut []
} else {
let ptr = utils::read_addr(Self::start() + off);
let res = std::slice::from_raw_parts_mut(ptr, len);
#[cfg(any(feature = "check_access_violation", debug_assertions))]
assert!(
Self::allocated(off, mem::size_of::<T>().max(1) * len),
"Access Violation (0x{:x}..0x{:x})",
off,
off + (mem::size_of::<T>().max(1) * len) as u64 - 1
);
res
}
}
/// Acquires a reference to the object
#[inline]
unsafe fn deref<'a, T: 'a>(off: u64) -> Result<&'a T> {
if Self::allocated(off, mem::size_of::<T>()) {
Ok(Self::get_unchecked(off))
} else {
Err(format!("Access Violation (0x{:x})", off))
}
}
/// Acquires a mutable reference pointer to the object
#[inline]
unsafe fn deref_mut<'a, T: 'a>(off: u64) -> Result<&'a mut T> {
if Self::allocated(off, mem::size_of::<T>()) {
Ok(Self::get_mut_unchecked(off))
} else {
Err(format!("Access Violation (0x{:x})", off))
}
}
/// Translates raw pointers to memory offsets
#[inline]
fn off<T: ?Sized>(x: *const T) -> Result<u64> {
if Self::valid(x) {
Ok(x as *const u8 as u64 - Self::start())
} else {
Err(format!("out of valid range ({:p})", x).to_string())
}
}
/// Valid Virtual Address Range
fn rng() -> Range<u64> {
Self::start()..Self::end()
}
/// Start of virtual address range
#[inline]
fn start() -> u64 {
Self::rng().start
}
/// End of virtual address range
#[inline]
fn end() -> u64 {
Self::rng().end
}
/// Total size of the memory pool
fn size() -> usize {
unimplemented!()
}
/// Available space in the pool
fn available() -> usize {
unimplemented!()
}
/// Total occupied space
fn used() -> usize {
Self::size() - Self::available()
}
/// Checks if the reference `p` belongs to this pool
#[inline]
fn valid<T: ?Sized>(p: *const T) -> bool {
let rng = Self::rng();
let start = p as *const u8 as u64;
// let end = start + std::mem::size_of_val(p) as u64;
start >= rng.start && start < rng.end
// && end >= rng.start && end < rng.end
}
/// Checks if `addr` is in the valid address range if this allocator
///
/// `addr` contains the scalar of a virtual address. If you have a raw
/// fat pointer of type T, you can obtain its virtual address by converting
/// it into a thin pointer and then `u64`.
///
/// # Examples
///
/// ```
/// let p = Box::new(1);
/// println!("Address {:#x} contains value '{}'", p.as_ref() as *const _ as u64, *p);
/// ```
#[inline]
fn contains(addr: u64) -> bool {
let rng = Self::rng();
addr >= rng.start && addr < rng.end
}
/// Allocate memory as described by the given `size`.
///
/// Returns a pointer to newly-allocated memory.
///
/// # Safety
///
/// This function is unsafe because undefined behavior can result
/// if the caller does not ensure that `size` has non-zero.
/// The allocated block of memory may or may not be initialized.
/// Using `alloc` may lead to memory leak if the transaction fails
/// after this function successfully returns. To allocate memory in
/// a failure-atomic manner, use [`pre_alloc`], [`Log::drop_on_failure`],
/// and [`perform`] functions respectively.
///
/// [`pre_alloc`]: #method.pre_alloc
/// [`Log::drop_on_failure`]: ../stm/struct.Log.html#method.drop_on_failure
/// [`perform`]: #method.pre_alloc
#[inline]
#[track_caller]
unsafe fn alloc(size: usize) -> (*mut u8, u64, usize) {
let (p, off, len, z) = Self::pre_alloc(size);
Self::drop_on_failure(off, len, z);
Self::perform(z);
(p, off, len)
}
/// Deallocate the block of memory at the given `ptr` pointer with the
/// given `size`.
///
/// # Safety
///
/// This function is unsafe because undefined behavior can result if the
/// caller does not ensure all of the following:
///
/// * `ptr` must denote a block of memory currently allocated via this
/// allocator,
///
/// * `size` must be the same size that was used to allocate that block
/// of memory.
#[inline]
#[track_caller]
unsafe fn dealloc(ptr: *mut u8, size: usize) {
Self::perform(Self::pre_dealloc(ptr, size));
}
/// Prepares allocation without performing it
///
/// This function is used internally for low-level atomicity in memory
/// allocation. As an example, please see [`drop_on_failure`].
///
/// It returns a 4-tuple:
/// 1. Raw pointer
/// 2. Offset
/// 3. Size
/// 4. Zone index
///
/// # Examples
///
/// ```
/// # use corundum::default::*;
/// # type P = Allocator;
/// # let _p = P::open_no_root("foo.pool", O_CF).unwrap();
/// unsafe {
/// let (ptr, _, _, z) = P::pre_alloc(8);
/// *ptr = 10;
/// P::perform(z);
/// }
/// ```
///
/// [`drop_on_failure`]: #method.drop_on_failure
///
unsafe fn pre_alloc(size: usize) -> (*mut u8, u64, usize, usize);
/// Prepares deallocation without performing it
///
/// This function is used internally for low-level atomicity in memory
/// allocation. As an example, please see [`drop_on_failure`].
///
/// It returns the zone in which the deallocation happens.
///
/// # Examples
///
/// ```
/// # use corundum::default::*;
/// # type P = Allocator;
/// # let _p = P::open_no_root("foo.pool", O_CF).unwrap();
/// unsafe {
/// let (ptr, _, _) = P::alloc(8);
/// *ptr = 10;
/// let zone = P::pre_dealloc(ptr, 8);
/// assert_eq!(*ptr, 10);
/// P::perform(zone);
/// assert_ne!(*ptr, 10);
/// }
/// ```
///
/// [`drop_on_failure`]: #method.drop_on_failure
///
unsafe fn pre_dealloc(ptr: *mut u8, size: usize) -> usize;
/// Adds a low-level log to update as 64-bit `obj` to `val` when
/// [`perform()`] is called. As an example, please see [`Log::set()`].
///
/// [`perform()`]: #method.perform
/// [`Log::set()`]: ../stm/struct.Log.html#method.set
///
unsafe fn log64(_off: u64, _val: u64, _zone: usize) {
unimplemented!()
}
/// Adds a low-level `DropOnFailure` log to perform inside the allocator.
/// This is internally used to atomically allocate a new objects. Calling
/// [`perform()`] drops these logs.
///
/// # Examples
///
/// ```
/// # use corundum::default::*;
/// # type P = Allocator;
/// # let _p = P::open_no_root("foo.pool", O_CF).unwrap();
/// unsafe {
/// // Prepare an allocation. The allocation is not durable yet. In case
/// // of a crash, the prepared allocated space is gone. It is fine
/// // because it has not been used. The `pre_` and `perform` functions
/// // form a low-level atomic section.
/// let (obj, off, len, zone) = P::pre_alloc(1);
///
/// // Create a low-level DropOnFailure log. This log is going to be used
/// // when a crash happens while performing the changes made by the
/// // preparation functions. If a crash happens before that, these logs
/// // will be discarded.
/// P::drop_on_failure(off, len, zone);
///
/// // It is fine to work with the prepared raw pointer. All changes in
/// // the low-level atomic section are considered as part of the
/// // allocation and will be gone in case of a crash, as the allocation
/// // will be dropped.
/// *obj = 20;
///
/// // Transaction ends here. The perform function sets the `operating`
/// // flag to show that the prepared changes are being materialized.
/// // This flag remains set until the end of materialization. In case
/// // of a crash while operating, the recovery procedure first continues
/// // the materialization, and then uses the `DropOnFailure` logs to
/// // reclaim the allocation. `perform` function realizes the changes
/// // made by the `pre_` function on the given memory zone.
/// P::perform(zone);
/// }
/// ```
///
/// [`perform()`]: #method.perform
/// [`Journal`]: ../stm/journal/struct.Journal.html
///
unsafe fn drop_on_failure(_off: u64, _len: usize, _zone: usize) {}
/// In case of not using [`pre_alloc`] or [`pre_dealloc`], starts a low-level
/// atomic section on a given zone.
///
/// [`pre_alloc`]: #method.pre_alloc
/// [`pre_dealloc`]: #method.pre_dealloc
///
unsafe fn prepare(_zone: usize) { }
/// Performs the prepared operations
///
/// It materializes the changes made by [`pre_alloc`](#method.pre_alloc),
/// [`pre_dealloc`](#method.pre_dealloc), and
/// [`pre_realloc`](#method.pre_realloc). See [`drop_on_failure`] for more
/// details.
///
/// [`drop_on_failure`]: #method.drop_on_failure
///
unsafe fn perform(_zone: usize) { }
/// Discards the prepared operations
///
/// Discards the changes made by [`pre_alloc`](#method.pre_alloc),
/// [`pre_dealloc`](#method.pre_dealloc), and
/// [`pre_realloc`](#method.pre_realloc). See [`drop_on_failure`] for more
/// details.
///
/// [`drop_on_failure`]: #method.drop_on_failure
///
unsafe fn discard(_zone: usize) { }
/// Behaves like `alloc`, but also ensures that the contents
/// are set to zero before being returned.
///
/// # Safety
///
/// This function is unsafe for the same reasons that `alloc` is.
/// However the allocated block of memory is guaranteed to be initialized.
///
/// # Errors
///
/// Returning a null pointer indicates that either memory is exhausted
/// or `size` does not meet allocator's size constraints, just as in `alloc`.
///
/// Clients wishing to abort computation in response to an
/// allocation error are encouraged to call the [`handle_alloc_error`] function,
/// rather than directly invoking `panic!` or similar.
///
/// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
unsafe fn alloc_zeroed(size: usize) -> *mut u8 {
let (ptr, _, _) = Self::alloc(size);
if !ptr.is_null() {
std::ptr::write_bytes(ptr, 0, size);
}
ptr
}
/// Allocates new memory and then places `x` into it with `DropOnFailure` log
unsafe fn new<'a, T: PSafe + 'a>(x: T, j: &Journal<Self>) -> &'a mut T where Self: MemPool {
debug_assert!(mem::size_of::<T>() != 0, "Cannot allocated ZST");
let mut log = Log::drop_on_failure(u64::MAX, 1, j);
let (p, off, len, z) = Self::atomic_new(x);
log.set(off, len, z);
Self::perform(z);
p
}
/// Allocates a new slice and then places `x` into it with `DropOnAbort` log
unsafe fn new_slice<'a, T: PSafe + 'a>(x: &'a [T], journal: &Journal<Self>) -> &'a mut [T] where Self: MemPool {
debug_assert!(mem::size_of::<T>() != 0, "Cannot allocate ZST");
debug_assert!(!x.is_empty(), "Cannot allocate empty slice");
let mut log = Log::drop_on_abort(u64::MAX, 1, journal);
let (p, off, size, z) = Self::atomic_new_slice(x);
log.set(off, size, z);
Self::perform(z);
p
}
/// Allocates new memory and then copies `x` into it with `DropOnFailure` log
unsafe fn new_copy<'a, T: 'a>(x: &T, j: &Journal<Self>) -> &'a mut T
where T: ?Sized, Self: MemPool {
let s = mem::size_of_val(x);
debug_assert!(s != 0, "Cannot allocated ZST");
let mut log = Log::drop_on_failure(u64::MAX, 1, j);
let (p, off, len, z) = Self::pre_alloc(s);
if p.is_null() {
panic!("Memory exhausted");
}
Self::drop_on_failure(off, len, z);
std::ptr::copy_nonoverlapping(x as *const T as *const u8, p, s);
log.set(off, len, z);
Self::perform(z);
&mut *utils::read(p)
}
/// Allocates new memory and then copies `x` into it with `DropOnFailure` log
unsafe fn new_copy_slice<'a, T: 'a>(x: &[T], j: &Journal<Self>) -> &'a mut [T] where Self: MemPool {
let s = mem::size_of_val(x);
debug_assert!(s != 0, "Cannot allocated ZST");
let mut log = Log::drop_on_failure(u64::MAX, 1, j);
let (p, off, len, z) = Self::pre_alloc(s);
if p.is_null() {
panic!("Memory exhausted");
}
Self::drop_on_failure(off, len, z);
std::ptr::copy_nonoverlapping(x as *const [T] as *const u8, p, s);
log.set(off, len, z);
Self::perform(z);
&mut *utils::read(p)
}
/// Allocates new memory and then places `x` into it without realizing the allocation
unsafe fn atomic_new<'a, T: 'a>(x: T) -> (&'a mut T, u64, usize, usize) {
log!(Self, White, "ALLOC", "TYPE: {}", std::any::type_name::<T>());
let size = mem::size_of::<T>();
let (raw, off, len, z) = Self::pre_alloc(size);
if raw.is_null() {
panic!("Memory exhausted");
}
Self::drop_on_failure(off, len, z);
let p = &mut *utils::read(raw);
mem::forget(ptr::replace(p, x));
(p, off, size, z)
}
/// Allocates new memory and then places `x` into it without realizing the allocation
unsafe fn atomic_new_slice<'a, T: 'a + PSafe>(x: &'a [T]) -> (&'a mut [T], u64, usize, usize) {
log!(Self, White, "ALLOC", "TYPE: [{}; {}]", std::any::type_name::<T>(), x.len());
let (ptr, off, size, z) = Self::pre_alloc(mem::size_of_val(x));
if ptr.is_null() {
panic!("Memory exhausted");
}
Self::drop_on_failure(off, size, z);
ptr::copy_nonoverlapping(
x as *const _ as *const u8,
ptr,
x.len() * mem::size_of::<T>().max(1),
);
(
std::slice::from_raw_parts_mut(ptr.cast(), x.len()),
off,
size,
z
)
}
/// Allocates new memory without copying data
unsafe fn new_uninit<'a, T: PSafe + 'a>(j: &Journal<Self>) -> &'a mut T where Self: MemPool {
let mut log = Log::drop_on_failure(u64::MAX, 1, j);
let (p, off, size, z) = Self::atomic_new_uninit();
log.set(off, size, z);
Self::perform(z);
p
}
/// Allocates new memory without copying data
unsafe fn new_uninit_for_layout(size: usize, journal: &Journal<Self>) -> *mut u8 where Self: MemPool {
log!(Self, White, "ALLOC", "{:?}", size);
let mut log = Log::drop_on_abort(u64::MAX, 1, journal);
let (p, off, len, z) = Self::pre_alloc(size);
if p.is_null() {
panic!("Memory exhausted");
}
Self::drop_on_failure(off, len, z);
log.set(off, len, z);
Self::perform(z);
p
}
/// Allocates new memory without copying data and realizing the allocation
unsafe fn atomic_new_uninit<'a, T: 'a>() -> (&'a mut T, u64, usize, usize) {
let (ptr, off, len, z) = Self::pre_alloc(mem::size_of::<T>());
if ptr.is_null() {
panic!("Memory exhausted");
}
Self::drop_on_failure(off, len, z);
(&mut *utils::read(ptr), off, len, z)
}
/// Allocates new memory for value `x`
unsafe fn alloc_for_value<'a, T: ?Sized>(x: &T) -> &'a mut T {
let raw = Self::alloc(mem::size_of_val(x));
if raw.0.is_null() {
panic!("Memory exhausted");
}
&mut *utils::read(raw.0)
}
/// Creates a `DropOnCommit` log for the value `x`
unsafe fn free<'a, T: PSafe + ?Sized>(x: &mut T) where Self: MemPool {
// std::ptr::drop_in_place(x);
let off = Self::off_unchecked(x);
let len = mem::size_of_val(x);
if std::thread::panicking() {
Log::drop_on_abort(off, len, &*Journal::<Self>::current(true).unwrap().0);
} else {
Log::drop_on_commit(off, len, &*Journal::<Self>::current(true).unwrap().0);
}
}
/// Creates a `DropOnCommit` log for the value `x`
unsafe fn free_slice<'a, T: PSafe>(x: &[T]) where Self: MemPool {
// eprintln!("FREEING {} of size {}", x as *mut u8 as u64, len);
if x.len() > 0 {
let off = Self::off_unchecked(x);
Log::drop_on_commit(
off,
x.len() * mem::size_of::<T>().max(1),
&*Journal::<Self>::current(true).unwrap().0,
);
}
}
/// Frees the allocation for value `x` immediately
unsafe fn free_nolog<'a, T: ?Sized>(x: &T) {
Self::perform(
Self::pre_dealloc(x as *const _ as *mut u8, mem::size_of_val(x))
);
}
/// Drops a `journal` from memory
unsafe fn drop_journal(_journal: &mut Journal<Self>) where Self: MemPool { }
/// Returns a reference to the offset of the first journal
unsafe fn journals_head() -> &'static u64 { unimplemented!() }
/// Runs a closure with a mutable reference to a thread->journal HashMap
unsafe fn journals<T, F: Fn(&mut HashMap<ThreadId, (u64, i32)>)->T>(_: F)->T {
unimplemented!()
}
/// Recovers from a crash
unsafe fn recover() {
unimplemented!()
}
/// Commits all changes and clears the logs for one thread
///
/// If the transaction is nested, it postpones the commit to the top most
/// transaction.
///
/// # Safety
///
/// This function is for internal use and should not be called elsewhere.
///
#[inline]
#[track_caller]
unsafe fn commit() where Self: MemPool {
// Self::discard(crate::ll::cpu());
if let Some(journal) = Journal::<Self>::current(false) {
*journal.1 -= 1;
if *journal.1 == 0 {
log!(Self, White, "COMMIT", "JRNL: {:?}", journal.0);
let journal = as_mut(journal.0);