Skip to content

NahidEbrahimian/Machine-Learning

Folders and files

NameName
Last commit message
Last commit date
Aug 25, 2021
Aug 25, 2021
Aug 25, 2021
Aug 25, 2021
Aug 25, 2021
Aug 25, 2021
Aug 25, 2021
Mar 29, 2024
Mar 29, 2024
Mar 29, 2024
Mar 29, 2024
Mar 29, 2024
Mar 29, 2024
Mar 29, 2024
Mar 29, 2024
Mar 29, 2024
Mar 29, 2024
Mar 29, 2024
Mar 29, 2024
Oct 11, 2022

Repository files navigation

Machine-Learning

01- Introductory-Machine-Learning

In this tutorial:

  • Mathematics and study statistics, and how to calculate important numbers based on data set

Reference site: w3schools

03- KNN Classifier

  • Implementation of KNeighbors Classifier

  • Evaluating model using Normalized random data

04- OCR of Hand-written using KNN

  • Building a basic OCR (Optical Character Recognition) application algorithm using KNeighbors Classifier

  • Evaluating model using Hand-written Digits related to Mnist numbers

Reference sites: opencv

Mnist, Hand-written numbers image: Mnist numbers

05- KNN on Iris Dataset

  • Apply Knn classifier with different values of k on Iris Dataset and plot test accuracy

  • Calculate and plot Confusion Matrix for predicted values with k = 5

06- Adaline Regression

  • Adaline on random generated data for weight and height of humans

  • linregress of scipy package - plot slope

07- Adaline Classification

  • Adaline on random generated data for hair length of men and women

08- AdalineRegressor on Boston Dataset

012

09- AdalineClassifier on Iris

  • Select two classes of Iris Dataset and Apply Adaline Classifier

  • Calculate accuracy

  • Comparison accuracy of Adaline Classifier with KNN on Select classes

10- Perceptron-Classification

  • Implementation of perceptron class, evaluate and predict function

  • Perceptron-Classification on linear data

11- Perceptron-Regression

  • Implementation of perceptron class, evaluate and predict function

  • Preprocessing data using pandas library

  • Perceptron-Regression on weatherHistory dataset

12-1 MLP on Titanic Dataset

  • MLP on Titanic Dataset, sequential model - tensorflow and keras

  • 12-2, 12-3, 12-4: Comparison accuracy of MLP with KNN, Adaline and perceptron on Titanic Dataset

  • Result:

MLP accuracy = 96%

Knn accuracy = 65%

Adaline accuracy = 86%

perceptron accuracy = 34%

13-MLP on House Prices Dataset

14- WeatherPrediction_Regression

  • Train Neural Network on weather-dataset using tensorflow and keras

Dataset:

Dataset link: weather-dataset

  • Loss on test data: 3.0455

15- learning-rate-schedules

Learning Rate schedules in Practice

Screenshot 2022-10-11 192707