diff --git a/python/test/calculate_bd_rate_test.py b/python/test/calculate_bd_rate_test.py new file mode 100644 index 000000000..dff135ccd --- /dev/null +++ b/python/test/calculate_bd_rate_test.py @@ -0,0 +1,409 @@ +import unittest + + +__copyright__ = "Copyright 2024, Netflix, Inc." +__license__ = "BSD+Patent" + +from vmaf.tools.bd_rate import calculate_bd_rate +from vmaf.tools.exceptions import BdRateNonMonotonicException, \ + BdRateNoOverlapException +from vmaf.tools.typing_utils import RdPoint + + +def create_rd_points(data: list[tuple[float, float]]) -> list[RdPoint]: + return [RdPoint(rate=rate, metric=metric) for rate, metric in data] + + +class CalculateBdRateTest(unittest.TestCase): + def setUp(self) -> None: + self.set_a = create_rd_points( + [ + (35.99646889759373, 21.955645250419696), + (37.99471487409067, 25.51236452853944), + (39.970621712367105, 28.044365039171787), + (42.346972697257975, 30.479270893956333), + (44.7457131337437, 32.55129509653048), + (47.154365304980416, 34.35170492445439), + (49.85285605484052, 36.159880512031336), + (52.668811762730826, 37.817858687744824), + (55.623246648013435, 39.4236739227756), + (58.709821225517615, 40.97726075825405), + (61.95339030218243, 42.47586071628426), + (65.39086712367096, 43.94792672076104), + (69.07053575825405, 45.38187315332959), + (72.92296374930051, 46.7512838066592), + (77.04220356463348, 48.12043552042529), + (81.27714736989365, 49.42854125629547), + (85.80023587017347, 50.72125632344712), + (90.70151323447116, 52.02140726776721), + (95.61377568550643, 53.247009597090084), + (101.18490854504753, 54.54781877448235), + (106.70571125909345, 55.77207227895914), + (112.80107593732511, 57.05675384023505), + (118.71002956351424, 58.22286424174595), + (125.49624718522664, 59.4644650601567), + (132.55080280358143, 60.67429805540012), + (140.1958864969222, 61.90510035674314), + (147.88641993844433, 63.041928063794046), + (156.33494113598206, 64.22106624930048), + (164.76788195858984, 65.33567544767766), + (173.94668501398993, 66.48116736149971), + (184.07738357022944, 67.64570549104643), + (194.3000549748181, 68.7236593242865), + (205.02014116955786, 69.79909077364297), + (216.48558646334627, 70.86179997202017), + (228.6963740850587, 71.91020905148292), + (241.1654202574147, 72.91811104504754), + (254.97357365976498, 73.96942905008393), + (269.34394547845557, 74.9730472439843), + (284.15034977056513, 75.93786445159483), + (300.33591073866813, 76.91376459149411), + (317.0971573363177, 77.86057887520982), + (334.6360977616115, 78.78165542809175), + (353.52509696138776, 79.69565129406824), + (373.29134338556247, 80.57908869613874), + (393.9552307218803, 81.44409020705092), + (415.95752090095135, 82.30904120733068), + (438.74847322327906, 83.13002760212642), + (463.7617672915498, 83.97161655008395), + (490.0063805707889, 84.77690864577501), + (516.9553140067148, 85.5381991116396), + (544.9439733240066, 86.28044596390599), + (576.3607511751537, 87.049304036094), + (607.7912813486286, 87.75004198377168), + (642.9993396698372, 88.46859445998881), + (678.4288774650249, 89.13938649272522), + (716.0146116899828, 89.79232830861778), + (757.1422397593731, 90.43804418019025), + (799.5379996586456, 91.04304998601005), + (843.7057127476214, 91.61936168158924), + (891.0241835086737, 92.18129753777283), + (941.0654296082818, 92.7274914871293), + (992.0100858869608, 93.22531138080583), + (1049.361345377728, 93.72490778539446), + (1106.0225737101287, 94.16627750419697), + (1169.031521835478, 94.61364252937885), + (1234.2873478623392, 95.02554775461667), + (1303.8650088919974, 95.42153838836039), + (1377.1698176105203, 95.788557491606), + (1453.2463230386118, 96.12595161583663), + (1532.4943320201453, 96.43917551762732), + (1621.3588033296023, 96.747294998601), + (1705.825332271964, 97.00223929071069), + (1807.3925386066035, 97.27276210128707), + (1908.5000484107447, 97.50972255875773), + (2014.398598975937, 97.72906203133745), + (2127.9466272691657, 97.92876842473417), + (2245.784021667598, 98.10873614297704), + (2371.8831237045324, 98.2783919418019), + (2505.2980083995526, 98.43403286233912), + (2644.597092540571, 98.57010871572473), + (2790.9417932904316, 98.69238183407946), + (2948.672410660327, 98.80515458869611), + (3107.1893589871306, 98.90337104085056), + (3288.155564739787, 98.99696463346388), + (3470.8710826636825, 99.07321914521543), + (3665.2945898880803, 99.14012702853941), + (3869.5733634862895, 99.19701270285395), + (4071.5218731505315, 99.24300500839394), + (4311.484267084497, 99.28674711807501), + (4558.244802909904, 99.31946469641859), + (4806.482321382206, 99.34378444320092), + (5079.722132064913, 99.36144804141017), + (5361.911769636264, 99.37290286793508), + (5665.047368091774, 99.38022224398433), + (5973.631636653609, 99.38404458589815), + (6315.611591936206, 99.38606273782877), + (6667.651857364297, 99.3870162283156), + (7037.4516035086735, 99.3875896334639), + (7434.023280637938, 99.38792124370454), + ] + ) + + def test_calculate_bd_rate_identical(self) -> None: + bd_rate = calculate_bd_rate(self.set_a, self.set_a) + expected_bd_rate = 0.0 + self.assertAlmostEqual(expected_bd_rate, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, self.set_a, at_perc=100) + expected_bd_rate = 0.0 + self.assertAlmostEqual(expected_bd_rate, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, self.set_a, at_perc=50) + expected_bd_rate = 0.0 + self.assertAlmostEqual(expected_bd_rate, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, self.set_a, at_perc=0) + expected_bd_rate = 0.0 + self.assertAlmostEqual(expected_bd_rate, bd_rate, places=8) + + def test_calculate_bd_rate_different_slightly(self) -> None: + set_b = create_rd_points( + [ + (35.99646889759373, 21.955645250419696), + (37.99471487409067, 25.51236452853944), + (39.970621712367105, 28.044365039171787), + (42.346972697257975, 30.479270893956333), + (44.7457131337437, 32.55129509653048), + (47.154365304980416, 34.35170492445439), + (49.85285605484052, 36.159880512031336), + (52.668811762730826, 37.817858687744824), + (55.623246648013435, 39.4236739227756), + (58.709821225517615, 40.97726075825405), + (61.95339030218243, 42.47586071628426), + (65.39086712367096, 43.94792672076104), + (69.07053575825405, 45.38187315332959), + (72.92296374930051, 46.7512838066592), + (77.04220356463348, 48.12043552042529), + (81.26477027979853, 49.42465443480694), + (85.78785878007832, 50.71736950195859), + (90.68913614437604, 52.017520446278674), + (95.6013985954113, 53.24312277560156), + (101.1049438220481, 54.528708883603784), + (106.72526639059875, 55.77544413122552), + (112.82063106883044, 57.06012569250141), + (118.72958469501955, 58.22623609401232), + (125.51580231673195, 59.46783691242307), + (132.55080280358143, 60.67429805540012), + (140.1958864969222, 61.90510035674314), + (147.88641993844433, 63.041928063794046), + (156.33494113598206, 64.22106624930048), + (164.76788195858984, 65.33567544767766), + (173.94668501398993, 66.48116736149971), + (184.07738357022944, 67.64570549104643), + (194.3000549748181, 68.7236593242865), + (205.02014116955786, 69.79909077364297), + (216.48558646334627, 70.86179997202017), + (228.6963740850587, 71.91020905148292), + (241.1654202574147, 72.91811104504754), + (254.97357365976498, 73.96942905008393), + (269.34394547845557, 74.9730472439843), + (284.15034977056513, 75.93786445159483), + (300.33591073866813, 76.91376459149411), + (317.0971573363177, 77.86057887520982), + (334.6360977616115, 78.78165542809175), + (353.52509696138776, 79.69565129406824), + (373.29134338556247, 80.57908869613874), + (393.9552307218803, 81.44409020705092), + (415.95752090095135, 82.30904120733068), + (438.74847322327906, 83.13002760212642), + (463.7617672915498, 83.97161655008395), + (489.84063154448785, 84.77202437045325), + (516.7895649804138, 85.53331483631784), + (544.9749663626188, 86.28081538192502), + (576.8655284890876, 87.06078310016787), + (607.6881892445435, 87.74725560996083), + (642.8791074762167, 88.46546687185227), + (678.3086452714043, 89.13625890458867), + (715.8616087185223, 89.78865049664242), + (757.1041860772242, 90.435000188864), + (798.15463343033, 91.02080761052042), + (843.5981930665919, 91.61538377867933), + (890.6553361611639, 92.17446489927256), + (941.2275728427528, 92.72510695299388), + (991.9775666759929, 93.22055148992727), + (1049.150817448237, 93.71790935926131), + (1105.4788035310573, 94.15517948377166), + (1169.7203790151086, 94.61349013010631), + (1235.467531913822, 95.02758209988808), + (1303.7973206323445, 95.41458729015112), + (1375.6589572915498, 95.77265730973697), + (1454.1877533575819, 96.1213997341914), + (1535.3317379966425, 96.43969173894797), + (1619.041704728595, 96.72884599188583), + (1706.2542370173471, 96.9918582470621), + (1806.7879060156686, 97.25875356043645), + (1907.8936883939557, 97.4924479854505), + (2012.3483121992158, 97.70996307358699), + (2126.4842019585894, 97.90953160324563), + (2245.182894241745, 98.08930167879124), + (2370.2106903693343, 98.25233185506434), + (2500.319466463347, 98.3971445928931), + (2643.4560019809737, 98.52912282456631), + (2778.632123116957, 98.63288324006716), + (2948.7437885674317, 98.738307113878), + (3109.8279768214884, 98.81400232232791), + (3278.805042137661, 98.8647137101287), + ] + ) + + bd_rate = calculate_bd_rate(self.set_a, set_b) + expected_bd_rate = 0.000537973253591284 + self.assertAlmostEqual(expected_bd_rate, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=100) + expected_bd_rate = 0.07795646560507974 + self.assertAlmostEqual(expected_bd_rate, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=50) + expected_bd_rate = 4.613748580961641e-07 + self.assertAlmostEqual(expected_bd_rate, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=0) + expected_bd_rate = 0.0 + self.assertAlmostEqual(expected_bd_rate, bd_rate, places=8) + + def test_calculate_bd_rate_different(self) -> None: + set_b = create_rd_points( + [ + (49.87328328483493, 28.61330510632344), + (52.38326659205375, 32.39771999160604), + (55.48787012870734, 35.43877945579183), + (58.73340142697256, 37.81863505176273), + (61.38781766088415, 39.45287702853945), + (65.24973810856183, 41.51289594991606), + (68.91803592053719, 43.25002306939003), + (72.90461613878006, 44.95657251678791), + (76.50681894795746, 46.343293172915494), + (81.22743775601566, 48.06086461947399), + (85.8963679574706, 49.55961627728036), + (90.6221019585898, 50.90070572887522), + (95.65390898712923, 52.23381047146056), + (101.13434360380525, 53.61339359960829), + (106.40240546726353, 54.8475233841634), + (112.42335666480132, 56.18486674594291), + (118.79365039171795, 57.459968270844996), + (125.05231551203133, 58.63419768466705), + (132.43335461667598, 59.89586900531618), + (139.88996440962507, 61.0835185996083), + (146.16949280917734, 62.04168247761612), + (155.7417632232793, 63.3899363878008), + (163.313640956911, 64.36612914101849), + (173.5439432232792, 65.58913973139342), + (182.53828067711245, 66.58945198656969), + (193.15859545047564, 67.70600593172915), + (204.38533732512593, 68.81500302182431), + (215.95536735310577, 69.90734120033578), + (227.63617066032455, 70.90756786513711), + (241.31498514829323, 71.9597451385003), + (253.7268753273643, 72.82036908925575), + (267.2595965472859, 73.70446921516509), + (283.9250800223839, 74.66681882344713), + (294.27475915500827, 75.23454667039732), + (316.458982495803, 76.38518377867935), + (334.1048723838837, 77.20506813094572), + (352.4061945998881, 77.96106693480695), + (369.71439789031893, 78.57269429910465), + (388.71730656966986, 79.09373393956353), + (416.22584212646893, 79.73839594292109), + (431.8296127756015, 80.04573062395076), + (456.8111591046446, 80.4380911723559), + (489.9550944711808, 80.81746619334079), + (505.8411566927812, 80.9060061345831), + (531.839469233352, 81.04617807078903), + ] + ) + + bd_rate = calculate_bd_rate(self.set_a, set_b) + self.assertAlmostEqual(0.0828609163164793, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=100) + self.assertAlmostEqual(0.38396884941389553, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=50) + self.assertAlmostEqual(0.03800171560649668, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=0) + self.assertAlmostEqual(0.23201845983320446, bd_rate, places=8) + + def test_calculate_bd_rate_nonoverlap(self) -> None: + set_b = create_rd_points([(point.rate, point.metric + 100.0) for point in self.set_a]) + self.assertRaises(BdRateNoOverlapException, calculate_bd_rate, self.set_a, set_b) + + def test_calculate_bd_rate_proportional(self) -> None: + set_b = create_rd_points([(point.rate * 1.1, point.metric) for point in self.set_a]) + + bd_rate = calculate_bd_rate(self.set_a, set_b) + self.assertAlmostEqual(0.1, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=100) + self.assertAlmostEqual(0.1, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=50) + self.assertAlmostEqual(0.1, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=0) + self.assertAlmostEqual(0.1, bd_rate, places=8) + + def test_calculate_bd_rate_proportional2(self) -> None: + set_b = create_rd_points([(point.rate * 0.9, point.metric) for point in self.set_a]) + + bd_rate = calculate_bd_rate(self.set_a, set_b) + self.assertAlmostEqual(-0.1, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=100) + self.assertAlmostEqual(-0.1, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=50) + self.assertAlmostEqual(-0.1, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=0) + self.assertAlmostEqual(-0.1, bd_rate, places=8) + + def test_calculate_bd_rate_constant(self) -> None: + set_b = create_rd_points([(point.rate + 100.0, point.metric) for point in self.set_a]) + + bd_rate = calculate_bd_rate(self.set_a, set_b) + self.assertAlmostEqual(0.8570879677536116, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=100) + # 7534.023280637938 / 7434.023280637938 - 1 = 0.01345166624113947 + self.assertAlmostEqual(0.01345166624113947, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=50) + self.assertAlmostEqual(0.7545138350290654, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=0) + # 135.99646889759373 / 35.99646889759373 - 1 = 2.778050266110539 + self.assertAlmostEqual(2.778050266110539, bd_rate, places=8) + + def test_calculate_bd_rate_constant2(self) -> None: + set_b = create_rd_points([(point.rate - 10.0, point.metric) for point in self.set_a]) + + bd_rate = calculate_bd_rate(self.set_a, set_b) + self.assertAlmostEqual(-0.10612811471545303, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=100) + self.assertAlmostEqual(-0.0013451666241135474, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=50) + self.assertAlmostEqual(-0.07545138577059218, bd_rate, places=8) + + bd_rate = calculate_bd_rate(self.set_a, set_b, at_perc=0) + self.assertAlmostEqual(-0.277805026611054, bd_rate, places=8) + + +class CalculateBdRateJCTVCTest(unittest.TestCase): + def test_calculate_bd_rate_1(self) -> None: + score = calculate_bd_rate( + create_rd_points([(108048.8736, 43.6471), (61279.976, 40.3953), (33905.6656, 37.247), (18883.6928, 34.2911)]), + create_rd_points([(108061.2784, 43.6768), (61299.9936, 40.4232), (33928.7472, 37.2761), (18910.912, 34.3147)]), + ) + expected_score = -0.00465215420752807 + self.assertAlmostEqual(expected_score, score, places=4) + + def test_calculate_bd_rate_2(self) -> None: + score = calculate_bd_rate( + create_rd_points([(40433.8848, 37.5761), (7622.7456, 35.3756), (2394.488, 33.8977), (1017.6184, 32.0603)]), + create_rd_points([(40370.12, 37.5982), (7587.0024, 35.4025), (2390.0944, 33.9194), (1017.0984, 32.0822)]), + ) + expected_score = -0.018779823450567612 + self.assertAlmostEqual(expected_score, score, places=4) + + def test_calculate_bd_rate_non_monotonic(self) -> None: + with self.assertRaises(BdRateNonMonotonicException): + _ = calculate_bd_rate( + create_rd_points([(108048.8736, 39.6471), (61279.976, 40.3953), (33905.6656, 37.247), (18883.6928, 34.2911)]), + create_rd_points([(108061.2784, 43.6768), (61299.9936, 40.4232), (33928.7472, 37.2761), (18910.912, 34.3147)]), + ) + + def test_calculate_bd_rate_non_monotonic2(self) -> None: + with self.assertRaises(BdRateNonMonotonicException): + _ = calculate_bd_rate( + create_rd_points([(58048.8736, 43.6471), (61279.976, 40.3953), (33905.6656, 37.247), (18883.6928, 34.2911)]), + create_rd_points([(108061.2784, 43.6768), (61299.9936, 40.4232), (33928.7472, 37.2761), (18910.912, 34.3147)]), + ) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/vmaf/tools/bd_rate.py b/python/vmaf/tools/bd_rate.py new file mode 100644 index 000000000..528421b02 --- /dev/null +++ b/python/vmaf/tools/bd_rate.py @@ -0,0 +1,158 @@ +""" +BD-rate calculator. Implementation validated against JCTVC-E137. +""" + +from __future__ import annotations + +__copyright__ = "Copyright 2016-2024, Netflix, Inc." +__license__ = "BSD+Patent" + +import math + +import numpy as np +from typing import Iterable, Any + +from scipy.integrate import trapezoid +from scipy.interpolate import pchip_interpolate # type: ignore[attr-defined] + +from vmaf.tools.convex_hull import calculate_convex_hull +from .exceptions import ( + BdRateNoOverlapException, + BdRateNonMonotonicException, + BdRateZeroRateException, + BdRateNotEnoughPointsException, +) +from .typing_utils import RdPoint + +INF_REPLACEMENT = 100.0 +NUM_SAMPLES = 100 + + +def calculate_bd_rate( + metric_set1: Iterable[RdPoint], + metric_set2: Iterable[RdPoint], + min_metric: float | None = None, + max_metric: float | None = None, + use_convex_hull: bool = False, + at_perc: float | None = None, +) -> float: + """ + Calculate the Bjontegaard Delta rate (BD-Rate). + + Bjontegaard's metric calculates the average percentage saving in bitrate + between two rate-distortion curves. This implementation uses Piecewise + Cubic Hermite Interpolating Polynomial (PCHIP) and the trapezoid method + for integration. + + Args: + metric_set1: Iterable of tuples (bitrate, metric) for the first graph. + metric_set2: Iterable of tuples (bitrate, metric) for the second graph. + min_metric: Optional minimum metric value for integration. + max_metric: Optional maximum metric value for integration. + use_convex_hull: If set, the BD-rate computation will be performed on the convex hull of the points. + at_perc: If set, the BD-rate will be calculated only at a percentage [0.0 - 100.0] where the metric range of the two curves overlaps. + + Returns: + The average savings in bitrate at equal quality. Multiply by 100 to get a percentage. + + Raises: + BdRateNotEnoughPointsException: If either metric set has fewer than 4 points. + BdRateNonMonotonicException: If either curve is non-monotonic. + BdRateZeroRateException: If any rate in the metric sets is zero. + BdRateNoOverlapException: If there is no overlapping interval for integration. + """ + + if not metric_set1 or not metric_set2: + raise BdRateNotEnoughPointsException("One or both of the metric sets is empty or null.") + + if use_convex_hull: + metric_set1 = calculate_convex_hull(metric_set1) + metric_set2 = calculate_convex_hull(metric_set2) + + if at_perc is not None: + if at_perc < 0 or at_perc > 100: + raise ValueError(f"at_perc must be between 0 and 100, but got {at_perc}.") + + # pchip_interpolate requires keys sorted by x axis. + # x-axis will be our metric, not the bitrate, so sort by metric. + metric_set1 = sorted(metric_set1, key=lambda p: p.metric) + metric_set2 = sorted(metric_set2, key=lambda p: p.metric) + + if len(metric_set1) < 4 or len(metric_set2) < 4: + raise BdRateNotEnoughPointsException("Each metric set must contain at least 4 points.") + + if not _is_curve_monotonic(metric_set1) or not _is_curve_monotonic(metric_set2): + raise BdRateNonMonotonicException("One or both curves are non-monotonic.") + + if not _rates_are_nonzero(metric_set1) or not _rates_are_nonzero(metric_set2): + raise BdRateZeroRateException("One or both metric sets contain zero rates.") + + # Pull the log of the rate and clamped metric from metric_sets. + log_rate1 = [math.log(x.rate) for x in metric_set1] + metric1 = [INF_REPLACEMENT if x.metric == float("inf") else x.metric for x in metric_set1] + log_rate2 = [math.log(x.rate) for x in metric_set2] + metric2 = [INF_REPLACEMENT if x.metric == float("inf") else x.metric for x in metric_set2] + + # Integration interval. This metric only works on the area that's + # overlapping. Extrapolation of these things is sketchy so we avoid. + min_int = max(min(metric1), min(metric2)) + if min_metric: + min_int = max(min_int, min_metric) + max_int = min(max(metric1), max(metric2)) + if max_metric: + max_int = min(max_int, max_metric) + + # No overlap means no sensible metric possible. + if max_int <= min_int: + raise BdRateNoOverlapException() + + if at_perc is None: + # Use Piecewise Cubic Hermite Interpolating Polynomial interpolation to + # create 100 new samples points separated by interval. + samples, interval = np.linspace(min_int, max_int, num=NUM_SAMPLES, retstep=True) + v1 = pchip_interpolate(metric1, log_rate1, samples) + v2 = pchip_interpolate(metric2, log_rate2, samples) + + # Calculate the integral using the trapezoid method on the samples. + int_v1 = trapezoid(v1, dx=float(interval)) + int_v2 = trapezoid(v2, dx=float(interval)) + + # Calculate the average improvement. + avg_exp_diff = (int_v2 - int_v1) / (max_int - min_int) + + # Exponentiate to undo the logarithms + return math.exp(avg_exp_diff) - 1 + + else: + at_metric = min_int + (max_int - min_int) * at_perc / 100.0 + v1b: Any = pchip_interpolate(metric1, log_rate1, [at_metric]) + v2b: Any = pchip_interpolate(metric2, log_rate2, [at_metric]) + + # Exponentiate to undo the logarithms + return math.exp(v2b[0] - v1b[0]) - 1 + + +def _is_curve_monotonic(points: list[RdPoint]) -> bool: + """ + Check if the RD curve is monotonic. + + Args: + points: List of RD points. + + Returns: + True if the curve is monotonic, False otherwise. + """ + return all(point1.rate < point2.rate and point1.metric < point2.metric for point1, point2 in zip(points, points[1:])) + + +def _rates_are_nonzero(points: Iterable[RdPoint]) -> bool: + """ + Check if all rates in the RD points are non-zero. + + Args: + points: List of RD points. + + Returns: + True if all rates are non-zero, False otherwise. + """ + return all(point.rate != 0 for point in points) diff --git a/python/vmaf/tools/convex_hull.py b/python/vmaf/tools/convex_hull.py new file mode 100644 index 000000000..cf4f0f249 --- /dev/null +++ b/python/vmaf/tools/convex_hull.py @@ -0,0 +1,51 @@ +from typing import Iterable + +from .typing_utils import RdPoint + + +def cross(o: RdPoint, a: RdPoint, b: RdPoint) -> float: + """ + 2D cross product of OA and OB vectors, i.e. z-component of their 3D cross product. + Returns a positive value, if OAB makes a counter-clockwise turn, + negative for clockwise turn, and zero if the points are collinear. + """ + return (a.rate - o.rate) * (b.metric - o.metric) - (a.metric - o.metric) * (b.rate - o.rate) + + +def calculate_convex_hull(points: Iterable[RdPoint]) -> list[RdPoint]: + """ + Computes the convex hull of a set of RdPoints. + + Input: an iterable sequence of RdPoints. + Output: a list of RdPoints of the convex hull in counter-clockwise order, + starting from the vertex with the lexicographically smallest coordinates. + + Implements Andrew's monotone chain algorithm. O(n log n) complexity. + For this application only the lower hull is used, so upper hull is not calculated. + Points that are nonmonotonic (higher rate, lower quality than some previous point) are disregarded. + """ + + # Sort the points lexicographically (tuples are compared lexicographically). + # Remove duplicates to detect the case we have just one unique point. + points = sorted(set(points), key=lambda point: (point.rate, point.metric)) + + # Remove points that are nonmonotonic: higher rate, lower quality + monotonic_points: list[RdPoint] = [] + for point in points: + if len(monotonic_points) == 0 or point.metric >= monotonic_points[-1].metric: + monotonic_points.append(point) + + # Boring case: no points or a single point, possibly repeated multiple times. + if len(monotonic_points) == 0: + return monotonic_points + if len(monotonic_points) == 1: + return monotonic_points + + # Build lower hull + hull: list[RdPoint] = [] + for p in reversed(monotonic_points): + while len(hull) >= 2 and cross(hull[-2], hull[-1], p) <= 0: + hull.pop() + hull.append(p) + + return hull diff --git a/python/vmaf/tools/exceptions.py b/python/vmaf/tools/exceptions.py new file mode 100644 index 000000000..6c0aa1640 --- /dev/null +++ b/python/vmaf/tools/exceptions.py @@ -0,0 +1,30 @@ +class BdRateException(Exception): + pass + + +class BdRateNotEnoughPointsException(BdRateException): + """Exception raised when there are not enough points in the BD-rate calculation.""" + + def __init__(self, message: str = "Not enough points for BD-rate calculation; at least 4 points required"): + super().__init__(message) + + +class BdRateNoOverlapException(BdRateException): + """Exception raised when there is no overlap in the BD-rate calculation.""" + + def __init__(self, message: str = "No overlap in BD-rate calculation"): + super().__init__(message) + + +class BdRateNonMonotonicException(BdRateException): + """Exception raised for non-monotonic data in the BD-rate calculation.""" + + def __init__(self, message: str = "Non-monotonic data found in BD-rate calculation"): + super().__init__(message) + + +class BdRateZeroRateException(BdRateException): + """Exception raised for data with zero rate in the BD-rate calculation.""" + + def __init__(self, message: str = "Points with zero rate found in BD-rate calculation"): + super().__init__(message) diff --git a/python/vmaf/tools/typing_utils.py b/python/vmaf/tools/typing_utils.py new file mode 100644 index 000000000..c08b87312 --- /dev/null +++ b/python/vmaf/tools/typing_utils.py @@ -0,0 +1,12 @@ +from __future__ import annotations + +from dataclasses import dataclass + + +@dataclass +class RdPoint: + rate: float + metric: float + + def __hash__(self) -> int: + return hash((self.rate, self.metric))