-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransforms.py
132 lines (106 loc) · 5.39 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torchvision
import numpy as np
from typing import List
def invert_single_full_transformation_matrix(theta):
a, b, c, d = theta[0, 0], theta[0, 1], theta[1, 0], theta[1, 1]
det_sub = a * d - b * c
inv_theta = np.zeros_like(theta)
inv_theta[0, 0] = d
inv_theta[0, 1] = -b
inv_theta[1, 0] = -c
inv_theta[1, 1] = a
inv_theta = inv_theta / det_sub
inv_theta[0, 2] = -theta[0, 2]
inv_theta[1, 2] = -theta[1, 2]
inv_theta[2, 2] = 1.
return inv_theta
def crop_params_to_full_matrix(crop_params, height, width):
theta = np.zeros((3, 3), dtype=np.float32)
theta[2, 2] = 1.
theta[0, 0] = crop_params[3] / width
theta[1, 1] = crop_params[2] / height
theta[0, 2] = theta[0, 0] - 1 + 2 * crop_params[1] / width
theta[1, 2] = -theta[1, 1] + 1 - 2 * crop_params[0] / height
return theta
class TransformsSimCLRReturnTransforms:
def __init__(self, size, jitter_strength=.5, p_grayscale=.2, p_color_jitter=.8,
scale=(.08, 1.), ratio=(3 / 4, 4 / 3), random_flip=True):
s = jitter_strength
color_jitter = torchvision.transforms.ColorJitter(
0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s
)
self.transform = torchvision.transforms.Compose(
[
torchvision.transforms.RandomApply([color_jitter], p=p_color_jitter),
torchvision.transforms.RandomGrayscale(p=p_grayscale),
torchvision.transforms.ToTensor(),
]
)
self.size = (size, size)
self.scale = scale
self.ratio = ratio
self.random_flip = random_flip
def __call__(self, x):
width, height = torchvision.transforms.functional.get_image_size(x)
crop_params_a = torchvision.transforms.RandomResizedCrop.get_params(x, self.scale, self.ratio)
theta_a = crop_params_to_full_matrix(crop_params_a, height, width)
crop_params_b = torchvision.transforms.RandomResizedCrop.get_params(x, self.scale, self.ratio)
theta_b = crop_params_to_full_matrix(crop_params_b, height, width)
a = torchvision.transforms.functional.resized_crop(x, *crop_params_a, self.size)
if self.random_flip and torch.rand(1) < .5:
a = torchvision.transforms.functional.hflip(a)
theta_a[0, 0] = -theta_a[0, 0]
b = torchvision.transforms.functional.resized_crop(x, *crop_params_b, self.size)
if self.random_flip and torch.rand(1) < .5:
b = torchvision.transforms.functional.hflip(b)
theta_b[0, 0] = -theta_b[0, 0]
ret_a = (theta_b @ invert_single_full_transformation_matrix(theta_a))[:2] # from a to b
ret_b = (theta_a @ invert_single_full_transformation_matrix(theta_b))[:2] # from b to a
return (self.transform(a), ret_a), (self.transform(b), ret_b)
def get_gaussian_kernel1d(kernel_size: int, sigma: torch.Tensor) -> torch.Tensor:
ksize_half = (kernel_size - 1) * .5
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size).type_as(sigma)
pdf = torch.exp(-.5 * (x[None, :] / sigma[:, None]).pow(2))
kernel1d = pdf / pdf.sum(dim=1, keepdim=True)
return kernel1d
def get_gaussian_kernel2d(kernel_size: List[int], sigma: torch.Tensor,
dtype: torch.dtype, device: torch.device) -> torch.Tensor:
kernel1d_x = get_gaussian_kernel1d(kernel_size[0], sigma[0]).to(device, dtype=dtype)
kernel1d_y = get_gaussian_kernel1d(kernel_size[1], sigma[1]).to(device, dtype=dtype)
kernel2d = kernel1d_y[:, :, None] * kernel1d_x[:, None, :]
return kernel2d
class RandomGaussian(torch.nn.Module):
def __init__(self, size, p=.5, sigma_range=(.1, 2.)):
super().__init__()
kernel_size = int(0.1 * size)
if kernel_size % 2 == 0:
kernel_size += 1
self.kernel_size = (kernel_size, kernel_size)
self.p = p
self.sigma_range = sigma_range
def forward(self, im):
batch_size = im.size(0)
sel = torch.less(torch.rand(batch_size).type_as(im), self.p)[:, None, None, None]
sigma_tensor_1d = torch.empty(batch_size).uniform_(self.sigma_range[0], self.sigma_range[1]).type_as(im)
sigma_tensor_2d = torch.stack((sigma_tensor_1d, sigma_tensor_1d), 0)
gauss_kernel = get_gaussian_kernel2d(self.kernel_size, sigma_tensor_2d, im.dtype, im.device)[:, None]
padding = [self.kernel_size[0] // 2, self.kernel_size[0] // 2, self.kernel_size[1] // 2, self.kernel_size[1] // 2]
padded_im = torch.nn.functional.pad(im, padding, mode='reflect')
channel_first_img = torch.transpose(padded_im, 0, 1)
channel_first_gauss_im = torch.nn.functional.conv2d(channel_first_img, gauss_kernel, groups=batch_size).type_as(im)
gauss_im = torch.transpose(channel_first_gauss_im, 0, 1)
im = torch.where(sel, gauss_im, im)
return im
class RandomSolarize(torch.nn.Module):
def __init__(self, p=.1):
super().__init__()
self.p = p
def forward(self, im, return_selection=False):
sel = torch.less(torch.rand(im.size(0)).type_as(im), self.p)
full_sel = sel[:, None, None, None]
solarized_im = torch.where(im < .5, im, 1. - im)
im = torch.where(full_sel, solarized_im, im)
if return_selection:
return im, sel
return im