-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_portfolio_and_snapshots.py
61 lines (48 loc) · 2.41 KB
/
extract_portfolio_and_snapshots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright (c) 2023 - 2024 Open Risk (https://www.openriskmanagement.com)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Script used in Step 3 of the Open Risk Academy Course
# https://www.openriskacademy.com/mod/page/view.php?id=754
import os
import pandas as pd
from config import column_names
from utils import create_static_table
from utils import load_file
def create_portfolio_table(df):
_pt = pd.DataFrame(columns=['name'])
for seller in df['SELLER'].unique():
_pt.loc[len(_pt.index)] = [seller]
return _pt
def create_portfolio_snapshot_table(df):
_pst = pd.DataFrame(columns=['monthly_reporting_period'])
for period in df['ACT_PERIOD'].unique():
_pst.loc[len(_pst.index)] = [period]
_pst['monthly_reporting_period'] = _pst['monthly_reporting_period'].apply(
lambda x: pd.to_datetime(x, format="%m%Y"))
return _pst
if __name__ == '__main__':
input_directory = "./PARTS/"
filename = input_directory + '2010Q2.100.part.csv'
files = os.listdir(input_directory)
input_table = load_file(filename, column_names)
static_table = create_static_table(input_table)
portfolio_table = create_portfolio_table(static_table)
portfolio_table.to_csv("DB_TABLES/portfolio.csv", sep='|', index=False)
portfolio_snapshot_table = create_portfolio_snapshot_table(input_table)
portfolio_snapshot_table.to_csv("DB_TABLES/portfolio_snapshot.csv", sep='|', index=False)