-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_static_loan.py
89 lines (75 loc) · 3.77 KB
/
extract_static_loan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright (c) 2023 - 2024 Open Risk (https://www.openriskmanagement.com)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Script used in Step 3 of the Open Risk Academy Course
# https://www.openriskacademy.com/mod/page/view.php?id=754
import os
import pandas as pd
from config import column_names
from config import loan_static
from data_dictionaries import *
from utils import create_static_table
from utils import load_file
def create_loan_table(df):
tmp = df.copy()
_lt = tmp[loan_static]
columns = {'LOAN_ID': 'loan_identifier',
'ACT_PERIOD': 'portfolio_snapshot_id',
'SELLER': 'portfolio_id',
'CHANNEL': 'channel',
'ORIG_RATE': 'original_interest_rate',
'ORIG_UPB': 'original_upb',
'ORIG_TERM': 'original_loan_term',
'ORIG_DATE': 'origination_date',
'FIRST_PAY': 'first_payment_date',
'OLTV': 'original_loan_to_value_ratio',
'OCLTV': 'original_combined_loan_to_value_ratio',
'PURPOSE': 'loan_purpose',
'PRODUCT': 'amortization_type',
'RELOCATION_MORTGAGE_INDICATOR': 'relocation_mortgage_indicator',
'HIGH_BALANCE_LOAN_INDICATOR': 'high_balance_loan_indicator',
'MI_PCT': 'mortgage_insurance_percentage',
'MI_TYPE': 'mortgage_insurance_type',
'PPMT_FLAG': 'prepayment_penalty_indicator',
'IO': 'interest_only_loan_indicator'}
_lt = _lt.rename(columns=columns)
_lt['channel'] = _lt['channel'].apply(lambda x: CHANNEL_DICT[x])
_lt['origination_date'] = _lt['origination_date'].apply(lambda x: pd.to_datetime(x, format="%m%Y"))
_lt['first_payment_date'] = _lt['first_payment_date'].apply(lambda x: pd.to_datetime(x, format="%m%Y"))
_lt['loan_purpose'] = _lt['loan_purpose'].apply(lambda x: LOAN_PURPOSE_DICT[x])
_lt['mortgage_insurance_type'] = _lt['mortgage_insurance_type'].apply(
lambda x: MORTGAGE_INSURANCE_DICT[x] if not pd.isna(x) else 0)
_lt['amortization_type'] = _lt['amortization_type'].apply(lambda x: AMORTIZATION_DICT[x])
return _lt
if __name__ == '__main__':
input_directory = "./PERF/"
files = os.listdir(input_directory)
input_files = [input_directory + f for f in files if os.path.isfile(input_directory + '/' + f)]
loans = []
for in_file in input_files:
input_table = load_file(in_file, column_names)
static_table = create_static_table(input_table)
del input_table
loan_table = create_loan_table(static_table)
del static_table
print(len(loan_table.index))
loans.append(loan_table)
loans_all = pd.concat(loans)
print(len(loans_all.index))
loans_all.to_csv("DB_TABLES/loan.csv", sep='|', index=False)