-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_static_property_collateral.py
70 lines (58 loc) · 2.72 KB
/
extract_static_property_collateral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright (c) 2023 - 2024 Open Risk (https://www.openriskmanagement.com)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Script used in Step 3 of the Open Risk Academy Course
# https://www.openriskacademy.com/mod/page/view.php?id=754
import os
import pandas as pd
from config import column_names
from config import property_collateral_static
from data_dictionaries import *
from utils import create_static_table
from utils import load_file
def create_property_collateral_table(df):
_pct = df[property_collateral_static]
columns = {
'LOAN_ID': 'loan_id',
'PROP': 'property_type',
'NO_UNITS': 'number_of_units',
'OCC_STAT': 'occupancy_status',
'STATE': 'property_state',
'MSA': 'metropolitan_statistical_area',
'ZIP': 'zip_code_short'}
_pct = _pct.rename(columns=columns)
_pct['property_type'] = _pct['property_type'].apply(lambda x: PROPERTY_DICT[x])
_pct['occupancy_status'] = _pct['occupancy_status'].apply(lambda x: OCCUPANCY_DICT[x])
return _pct
if __name__ == '__main__':
input_directory = "./PERF/"
files = os.listdir(input_directory)
input_files = [input_directory + f for f in files if os.path.isfile(input_directory + '/' + f)]
properties = []
for in_file in input_files:
input_table = load_file(in_file, column_names)
static_table = create_static_table(input_table)
del input_table
property_table = create_property_collateral_table(static_table)
del static_table
print(len(property_table.index))
properties.append(property_table)
properties_all = pd.concat(properties)
print(len(properties_all.index))
properties_all.to_csv("DB_TABLES/property_collateral.csv", sep='|', index=False)